• Title/Summary/Keyword: Dielectric constant and loss

Search Result 604, Processing Time 0.044 seconds

Dielectric properties of TEX>$Al_2O_3$ thin Elm deposited at room temperature by DC reactive sputtering (DC 반응성 스퍼터링으로 상온에서 증착한 $Al_2O_3$ 박막의 유전특성)

  • 박주동;최재훈;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.411-418
    • /
    • 2000
  • $Al_2O_3$ thin films of 300 nm thickness were deposited at room temperature using DC reactive sputtering with variation of the $O_2$ content in the sputtering gas from 30% to 70%. Regardless of the $O_2$ content in the sputtering gas, the sputtered $Al_2O_3$ films were amorphous and exhibited the refractive index of 1.58. When the $O_2$ content in the sputtering gas was higher than 50%, the $Al_2O_3$ films exhibited excellent transmittance of about 98% at 550 nm wavelength. However, the transmittance decreased to about 94% for the $Al_2O_3$ films deposited with the sputtering gas of the 30% and 40% $O_2$contents. The optimum dielectric properties (dielectric constant of 10.9 and loss tangent of 0.01) was obtained for the $Al_2O_3$ film deposited with the sputtering gas of the 50% $O_2$ content. When the $O_2$ content in the sputtering gas was within 40% to 60%, the $Al_2O_3$ films exhibited no shift of flatband voltage $V_{FB}$ in C-V curves and exhibited leakage current density lower than $10^{-5}\textrm{A/cm}^2$ at 150 kV/cm.

  • PDF

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

Effects of Sodium Excess on Ferroelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics (Bi0.5(Na0.78K0.22)0.5TiO3 세라믹스의 강유전 특성에 미치는 나트륨 과잉 효과)

  • Park, Jung-Soo;Kim, Seong-Won;Jeong, Young-Hun;Yun, Ji-Sun;Paik, Jong-Hoo;Lee, Sung-Gap;Cho, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.764-768
    • /
    • 2016
  • To investigate excess $Na^+$ effect, $Bi_{0.5}(Na_{0.78+x}K_{0.22})_{0.5}TiO_3$ ($0{\leq}x{\leq}0.05$) (BNKT) ceramics were prepared by using a conventional solid-state reaction method. The structure and ferroelectric properties of BNKT ceramics were characterized by XRD (X-ray diffraction) and polarization dependence by external electric field. Also, the temperature dependence of dielectric constant and loss were studied. From these results, it was found that appropriate excess $Na^+$ into BNKT ceramics compensate the volatility and induce dense ceramics. The enhanced piezoelectric coefficient (158 pC/N) and depolarization temperature ($202^{\circ}C$) were obtained for the x=0.01 composition.

Reliable Anisotropic Conductive Adhesives Flip Chip on Organic Substrates For High Frequency Applications

  • Paik, Kyung-Wook;Yim, Myung-Jin;Kwon, Woon-Seong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.35-43
    • /
    • 2001
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers. Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of $SiO_2filler$ to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. Our results indicate that the electrical performance of ACF combined with electroless Wi/Au bump interconnection is comparable to that of solder joint.

  • PDF

Preparation and Electrical properties of the PLT(28) Thin Film (PLT(28) 박막의 제작과 전기적 특성에 관한 연구)

  • 강성준;정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.784-787
    • /
    • 2002
  • We prepared the PLT(28) thin film by using sol-gel method and investigated the structure and electrical properties of the film. With the XRD and AFM analyses, it is found that PLT(28) thin film annealed at 6sot has a complete perovskite structure and its surface roughness is about 22$\AA$. We prepared PLT(28) thin film on the Pt/TiO$_{x}$SiO$_2$/Si substrate, in which the specimen has a planar capacitor structure, and analyzed the electrical properties of PLT(28) thin film. In result, PLT(28) thin film has a paraelectric phase and its dielectric constant and loss tangent at 10kHz are 761 and 0.024, respectively. Also, the storage charge density and leakage current density of PLT(28) thin film at W are 134fC/$\mu$m2 and 1.01 $\mu$A/cm2, respectively. As a result of this, we concluded that the PLT(28) thin film is a promising material to be used as a capacitor dielectrics for next generation DRAM.M.

  • PDF

Performance Evaluation of Antipodal Vivaldi Antenna in the Time- and Frequency-Domains for IR-UWB Systems Application (IR-UWB 시스템 응용을 위한 시간- 및 주파수-영역에서의 앤티포달 비발디 안테나 성능 평가)

  • Koh, Young-Mok;Kim, Keun-Yong;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, we designed the antipodal vivaldi antenna for IR-UWB systems application and evaluated IR-UWB antenna performance for the ultra wideband impulse signal transmission in the time- and frequency-domain. The designed antipodal vivaldi antenna was fabricated using FR-4 substrate which thickness 1.6 mm, dielectric constant ${\epsilon}_r=4.7$ and $tan{\delta}=0.002$. We measured the return loss, far filed radiation pattern at the anechoic chamber in the frequency-domain. We also performed the pulse fidelity analysis in the time-domain using nano-second impulse signal transmission and demonstrated the feasibility of ultra wideband signal stable transmission in the UWB band. The designed and fabricated antipodal vivaldi antenna could be emitting and receiving the IR-UWB signal while preserving low pulse distortion and good radiation pattern in time- and frequency-domain.

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim;Jae-Hyeon Lee;Seok-Hu Bae;Jung-Hwan Yoon;Ju-Ho Yun
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.

Microstructure and Electrical Properties of Vanadium-doped ${Bi_4}{Ti_3}{O_{12}}$ Thin Films Prepared by Sol-gel Method (졸-겔법으로 성장시킨 바나듐이 도핑된 ${Bi_4}{Ti_3}{O_{12}}$ 박막의 미세구조 및 전기적 특성)

  • Kim, Jong-Guk;Kim, Sang-Su;Choe, Eun-Gyeong;Kim, Jin-Heung;Song, Tae-Gwon;Kim, In-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.960-964
    • /
    • 2001
  • $Bi_{3.99}Ti_{2.97}V_{0.03}O_{12}$ (BTV) thin films with 3 mol% vanadium doping were Prepared on $Pt/Ti/SiO_2/Si$ substrate by sol-gel method. X-ray diffraction analysis indicated that single-phase layered perovskite were obtained and preferred orientation was not observed. Under the annealing temperature at $600^{\circ}C$, the surface morphology of the BTV thin films had fine-rounded particles and then changed plate-like at $650^{\circ}C$ and $700^{\circ}C$. The remanent polarization $(2P_r)$ and coercive field $(2E_c)$ of $700^{\circ}C$ annealed BTV thin film were 25 $\mu$C/cm$^2$ and 116 kV/cm, respectively. In addition, BTV thin film showed little polarization fatigue during $10_9$ switching cycles. These improved ferroelectric properties were attributed to the increased rattling space and reduced oxygen vacancies by substitution $Ti^{4+}$ ion (68 pm) with smaller $V^{5+}$ ion (59 pm). The dielectric constant and loss were measured 130 and 0.03 at 10 kHz, respectively.

  • PDF

Analysis of Tapered Slot Antenna for UWB with Directivity Characteristic (지향성 특성을 갖는 UWB 용 테이퍼드 슬롯 안테나 분석)

  • Kim, Sun-Woong;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.691-697
    • /
    • 2016
  • In this paper, we propose the antenna to appropriate for a UWB communication system, and it meets characteristics for location recognition in predetermined range. Proposed tapered slot antenna was designed through the HFSS simulation tool of Ansys. Inc., it was produced by Taconic TRF-45 based on dielectric constant of 4.5, loss tangent 0.0035, thickness 1.62mm. The tapered slot antenna is analyzed the standing wave ratio and reflection coefficient, radiation pattern in the frequency domain. The impedance bandwidth range of the produced tapered slot antenna is from 3.8 ~ 8.9GHz to 5.1GHz, E-plane and H-plane radiation pattern meet directional antenna characteristics for indoor and outdoor location recognition in predetermined range. The antenna gain is 7.4 dBi(6GHz)in the simulation, the result of measurement demonstrated 7.4 dBi(6 GHz) of antenna maximum gain. Proposed tapered slot antenna meets UWB communication system but simulated and measured results were slightly different.

A Small Broadband Antenna for Wibro/WLAN/Mobile WiMAX (Wibro/WLAN/Mobile WiMAX용 소형 광대역 안테나)

  • Ko, Jeong-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.568-575
    • /
    • 2011
  • In this paper, we propose a small broadband antenna for mobile device. The proposed antenna consists of a printed rectangular monopole antenna and a parastic element connected to ground using narrow meander line and it is designed on a FR-4 substrate that has a thickness of 0.8 mm and a dielectric constant of 4.4. The FR-4 substrate's size is 50 mm${\times}$90 mm comparable to the real mobile device. The fabricated antenna's size is 12.5 mm${\times}$10.5 mm${\times}$0.8 mm and the measurement shows -10 dB return loss bandwidth of 2,200~6,000 MHz and gains of 2.86~4.01 dBi. Accordingly, the proposed antenna can support mobile device for WiBro(2,300~2,380 MHz), WLAN(IEEE 802.11b/g/n: 2,400~2,480 MHz, IEEE 802.11a: 5,150~5,825 MHz), and mobile WiMAX(IEEE 802.16e : 2,500~2,690 MHz, 3,400~3,600 MHz) service bands.