Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.12.764

Effects of Sodium Excess on Ferroelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics  

Park, Jung-Soo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Seong-Won (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Yun, Ji-Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Paik, Jong-Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Sung-Gap (Department of Materials Science and Engineering, Gyeong-Sang National University)
Cho, Jeong-Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.12, 2016 , pp. 764-768 More about this Journal
Abstract
To investigate excess $Na^+$ effect, $Bi_{0.5}(Na_{0.78+x}K_{0.22})_{0.5}TiO_3$ ($0{\leq}x{\leq}0.05$) (BNKT) ceramics were prepared by using a conventional solid-state reaction method. The structure and ferroelectric properties of BNKT ceramics were characterized by XRD (X-ray diffraction) and polarization dependence by external electric field. Also, the temperature dependence of dielectric constant and loss were studied. From these results, it was found that appropriate excess $Na^+$ into BNKT ceramics compensate the volatility and induce dense ceramics. The enhanced piezoelectric coefficient (158 pC/N) and depolarization temperature ($202^{\circ}C$) were obtained for the x=0.01 composition.
Keywords
Lead free; Ferroelectric; $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ ceramics; Actuator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1997).
2 T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 111 (2007). [DOI: https:/doi.org/10.1007/s10832-007-9095-5]   DOI
3 J. Rodel, W. Jo, K.T.P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009).   DOI
4 P. K. Panda, J. Mater. Sci., 44, 5049 (2009). [DOI: https:/doi.org/10.1007/s10853-009-3643-0]   DOI
5 C. Zhou, X. Liu, and W. Li, J. Mater. Sci. Eng. B, 153, 31 (2008). [DOI: https:/doi.org/10.1016/j.mseb.2008.09.032]   DOI
6 T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991). [DOI: https:/doi.org/10.1143/JJAP.30.2236]   DOI
7 A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys., 38 5564 (1999). [DOI: https:/doi.org/10.1143/JJAP.38.5564]   DOI
8 K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006). [DOI: https:/doi.org/10.1143/JJAP.45.4493]   DOI
9 M. Naderer, D Schutz, T. Kainz, K. Reichmann, and F. Mittermayr, J. Eur. Ceram. Soc., 32, 2299 (2012). [DOI: https:/doi.org/10.1016/j.jeurceramsoc.2012.02.031]
10 Z. Yang, B. Liu, L. Wei, and Y. Hou, Mater. Res. Bull., 43, 81 (2008). [DOI: https:/doi.org/10.1016/j.materresbull.2007.02.016]   DOI
11 C. J. Jeon, W. J. Yeo, and E. S. Kim, J. Ceram. Soc. Japan., 118, 1079 (2010). [DOI: https:/doi.org/10.2109/jcersj2.118.1079]   DOI
12 Q. Xu, D. P. Huang, M. Chen, W. Chen, H. X. Liu, and B. H. Kim, J. Alloys Compd., 471, 310 (2009). [DOI: https:/doi.org/10.1016/j.jallcom.2008.03.078]   DOI
13 J. S. Park, C. J. Jeon, Y. H. Jeong, J. S. Yun, and J. H. Cho, Mater. Lett., 167, 218 (2016). [DOI: https:/doi.org/10.1016/j.matlet.2016.01.011]   DOI
14 F. Ni, L. Luo, X. Pan, W. Li, and J. Zhu, J. Alloys Compd., 541, 150 (2012). [DOI: https:/doi.org/10.1016/j.jallcom.2012.06.129]   DOI