• Title/Summary/Keyword: Dielectric barrier discharge (DBD)

Search Result 167, Processing Time 0.034 seconds

Optical properties of nitrogen doped ZnO thin films grown by dielectric barrier discharge plasma-assisted pulsed laser deposition (Dielectric barrier discharge 플라즈마 펄스 레이져 증착법을 통해 성장한 nitrogen 도핑 된 산화아연 박막의 광학적 특성)

  • Lee, Deuk-Hee;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1256_1257
    • /
    • 2009
  • We have grown, for the first time to our knowledge, N-doped ZnO thin films on sapphire substrate by employing novel dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting to find a dominant acceptor-bound exciton peak ($A^0X$) that indicates the successful p-type doping of ZnO with N.

  • PDF

Investigation of the Driving Frequency Effect on the RF-Driven Atmospheric Pressure Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Jung Yeol;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.74-78
    • /
    • 2017
  • The discharge characteristics of the radio frequency (RF) surface dielectric barrier discharge have been simulated for the investigation of the ratio of the ion transit time to the RF period. From one-dimensional particle-in-cell (PIC) simulation for a planar dielectric barrier discharge (DBD), it was observed that the high-frequency driving voltage confines the ions in the plasma because of a shorter RF period than the ion transit time. For two-dimensional surface dielectric barrier discharges, a fluid simulation is performed to investigate the characteristics of RF discharges from 1 MHz to 40 MHz. The ratio of the peak density to the average density decreases with the increasing frequency, and the spatiotemporal discharge patterns change abruptly with the change in the ratio of ion transit time to the RF period.

Removal of Gaseous Elemental Mercury Using Reactive Species Produced by Dielectric Barrier Discharge (저온 플라즈마 반응에 의해 생성된 반응활성종을 이용한 원소상 수은의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.479-484
    • /
    • 2006
  • Removal of elemental mercury $(Hg^0)$ with the reactive species produced from dielectric barrier discharge (DBD) was studied. We investigated the effect of operating parameters such as the applied voltage, residence time, initial concentration and co-existence of other pollutants. The removal of $(Hg^0)$ was significantly promoted by an increase in the applied voltage of the DBD reactor system. It is important to note that at the same input power, the removal efficiency of $(Hg^0)$ was much higher than that of NO gas. These results imply that if the DBD system is used as a NOx treatment facility, it is capable of removing $(Hg^0)$ simultaneously with NOx.

Momentum Measurement of Induced Flow by DBD Plasma Using PIV (PIV를 이용한 DBD 플라즈마 유도 유동장 운동량의 예측)

  • Sohn, Jun Ha;Kim, Namhoon;Kim, Kyungyeon;Furudate, Michiko Ahn
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • Particle image velocimetry is performed in order to analyze flowfield induced by a dielectric barrier discharge plasma actuator. The velocity vector fields are obtained for the two different input voltage conditions; the voltage 3 and 5 kV at the frequency 10 kHz. The obtained flowfields show that the air is accelerated and its speed increase almost linearly over the covered electrode. The amount of momentum induced by the DBD plasma actuator is estimated from the obtained velocity fields, and the estimated values reasonably agree with the previous experiment.

Inactivation of Zooplankton Artemia sp. Using Plasma Process (플라즈마 공정을 이용한 동물성 플랑크톤 Artemia sp. 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • This study aims to inactivate Artemia sp. (Zooplankton) in ballast water through the dielectric barrier discharge (DBD) plasma process. The DBD plasma process has the advantage of enabling direct electric discharge in water and utilizing chemically active species generated by the plasma reaction. The experimental conditions for plasma reaction are as follows; high voltage of 9-22 kV, plasma reaction time of 15-600 s, and air flow rate of 0.5-5.5 L/min. The results showed that the optimal experimental conditions for Artemia sp inactivation were 16 kV, 60 s, 2.5 L/min, respectively. The concentrations of total residual oxidants and ozone generated by plasma reaction increased with an increase of in voltage and reaction time, and the concentration of generated air did not increase above a certain amount.

대기압 플라즈마 정밀 Etching 기술 개발

  • Im, Chan-Ju;Kim, Yun-Hwan;Lee, Sang-Ro;Ak, Heun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.263-263
    • /
    • 2011
  • 본 연구에서는 DBD (Dielectric Barrier Discharge)방식의 상압 플라즈마를 이용하여 FPD (flat panel display) 공정에 사용되는 a-Si, Si3N4의 식각 공정 특성을 평가하였다. 사용된 DBD 반응기는 기존의 blank planar plate 형태의 Power가 인가되는 anode 부분과 Dielectric Barrier 사이 공간을 액상의 도전체로 채워 넣은 형태의 전극이 사용 하였으며, 인가 Power는 40kHz AC 최대인가 전압 15 kVp를 사용 하였다. 방전 가스는 N2, 반응가스로는 CDA (Clean Dry Air)와 NF3, 액상의 Etchant를 사용 하였으며 모든 공정은 In-line type으로 시편을 처리 하였다. NF3의 경우 30 mm/sec 이송속도 1회 처리 기준 a-Si 1300${\AA}$, Si3N4 1900${\AA}$의 식각 두께를 보였으며 a-Si : Si3N4 선택비는 N2, CDA의 조절을 통하여 최대 1:2에서 4:1 정도까지 변화가 가능하였다. 균일도는 G2 (370 mm${\times}$470 mm)의 경우 5.8 %의 균일도를 보이고 있다. 이외에도 NF3 공정의 경우 실제 TFT-LCD 공정 중 n+ channel (n+ a-Si:H)식각 공정에 적용하여 5.5 inch LCD panel feasibility를 확인 할 수 있었다. 액상 Etchant (HF수용액, NH4HF2)는 버블러를 사용하여 기화 시켜 플라즈마 소스를 통해 1차적으로 활성화 시키고 기존 DBD 반응기에 공급해 주는 형태로 평가를 진행하였다. 식각 특성은 30mm/sec 이송속도에서 a-Si $25{\AA}$ 정도로 가스 형태의 Etchant에 비해 매우 낮은 수준이나 Etching rate 향상을 위한 factor 파악 및 개선을 위한 연구를 진행 하였다.

  • PDF

A study on non-thermal plasma reactor for generation of negative ions (음이온 발생을 위한 저온 플라즈마 반응기 개발에 관한 연구)

  • Yu, Guang-Xun;Chae, Jae-Ou;Kim, Woo-Hyung;Wei, Wei;Wang, Hui
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2344-2347
    • /
    • 2007
  • To generate negative ion, a small dielectric barrier discharge (DBD) plasma reactor was used in this study and operated by high AC voltage. With increasing of voltage, we can get more negative ions. However unfortunately, if the input voltage is too high, it will also cause formation of ozone which is very harmful to human being health. So the work of finding out the best condition of Voltage and frequency was carried out firstly. After several times of measurement, operating at 20 kHz frequency is the best condition generating high ion concentration without ozone. For the purpose of finding out the best reactor structure, two types of surface dielectric barrier discharge (DBD) reactors were examined to produce negative oxygen ions at the conditions of 20 kHz frequency. The results indicated that the surface DBD reactor with several small tips showed better characteristics for generation of negative oxygen ions at the same condition.

  • PDF

Nano Particle Precipitation and Residual Ozone Decomposition of a Hybrid Air Cleaning System Comprising Dielectric Barrier Discharge Plasma and MnO2 Catalyst or Activated Carbon (활성탄 또는 촉매가 장착된 배리어 유전체 방전 하이브리드. 공기청정 시스템의 나노입자 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Hwang, Jung-Ho;Ji, Jun-Ho;Kang, Suk-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.524-533
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Aim of this work is to determine design and operating parameters of a hybrid air cleaning system. DBD and ESP(Electrostatic Precipitator) are used as nano particle charger and collector, respectively. Pelletized MnO$_2$ catalyst or activated carbon is used fer ozone decomposition or adsorption material. AC voltage of 7~10 KV(rms) and 60 Hz is used as DBD plasma source. DC - 8 KV is applied to the ESP for particle collection. The overall particle collection efficiency for the hybrid system is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized MnO$_2$ catalyst or activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

Analysis of Electromagnetic Wave Scattering Characteristics of Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석)

  • Lee, Soo-Min;Oh, Il-Young;Hong, Yong-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper presented measurement results of scattering characteristics of dielectric barrier discharge (DBD) plasma at atmospheric pressure. In this paper, plasma actuator is fabricated by parallel connecting of basic configuration of DBD plasma actuator, then plasma could be generated by applying 14 kV, 4 kHz of high voltage generator. In order to measure the scattering characteristics of DBD plasma, in this paper, two horn antennas and vector network analyzer are used to compare the S-parameter. Because of the structure of fabricated plasma generator, different result is obtained as antenna polarization changes. When antenna polarization is parallel to electrodes of plasma generator, the scattered field is reduced by 2 dB in maximum. In addition, for parallel polarization case, PEC is set up behind the plasma generator to measure backward scattered field. When the observation angles are $40^{\circ}C$ and $60^{\circ}C$, the amount of reduced scattered field is 2 dB in maximum at 5 GHz.

Ozone Production Characteristics of the DBD Discharge the Electrode Shape at the Same Electrode surface area (동일한 전극 표면적에서 DBD방전형 내부전극 형상에 따른 오존생성특성 연구)

  • Kwon, Young-Hak;Park, Hyunmi;Song, HyunGig;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.71-77
    • /
    • 2016
  • The dielectric barrier discharge (DBD) has low efficiency due to about 70% input power is consumed as thermal energy in the discharge space. However, because of the usage of DBD ozone generator is easier than other methods. The DBD ozone generator has been widely applied for high concentration ozone generation in the industrial application. But, the low-capacity compact DBD ozone generator is not applied so far. Therefore, the DBD ozone generator is necessary to improve ozone production efficiency and reduce the capacity. In this paper, the stainless steel pipe inner electrode was designed with hall type and screw type to improve the ozone production yield. The manufactured two inner electrodes were experimented with normal type for comparison of the discharge characteristics and the ozone generating characteristics. As the experimental results, the discharge current effective value of designed inner electrodes with hall type and screw type are higher than the normal type, due to unequal electric field is formed at the boundary. However, the difference of designed and original electrodes is less than 0.1mA that has no effect on the discharge characteristic. On the other hand, the screw type inner electrode increased higher than original model about 7 times when the flow rate of the oxygen source gas was increased from $0.6{\ell}/min$ to $1.0{\ell}/min$ The reason was assumed by the flow rate of the raw gas through the inner electrode was became fast that has a cooling effect. The designed hall type and screw type inner electrodes have shown good performances in ozone generation and ozone production that better than normal type in the same electrode surface area.