• Title/Summary/Keyword: Dielectric Materials

Search Result 2,119, Processing Time 0.034 seconds

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Analysis of Parameter Characteristic of Parallel Electrodes Conduction-cooled Film Capacitor for HF-LC Resonance (고주파 LC 공진을 위한 병렬전극 전도냉각 필름커패시터의 파라메타 특성 분석)

  • Won, Seo-Yeon;Lee, Kyeong-Jin;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.155-166
    • /
    • 2016
  • It is important to configure capacitance(C) of the capacitor and the induction coefficient(L) of the work coil on the resonant circuit design stage in order to induce heating on the object by a precise and constant frequency components in the electromagnetic induction heating equipment. Work coil conducts a direct induction heating according to heating point and area of the object which has a fixed heat factor so that work coil is designed to has fixed value. On the other hands, Capacitor should be designed to be changed in order to be the higher the utilization of the entire equipment. It is extracted the samples by variation of single electrode capacity from the selection stage of raw materials for capacity to the stage of process design for output of the high frequency LC resonance of 700kHz on 1000 VAC maximum voltage and current to $200I_{MAX}$. It is suggested fundamental experiment results in order to prove relation for the optimal design of HF-LC resonance conduction-cooled capacitor based on the response of frequency characteristics and results of output parameters according to variation of the capacitance size.

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Piezoelectric and Electro-induced Strain Properties of $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$Ceramics with the Substitution of $Bi_2O_3$ ($Bi_2O_3$치환에 따른 $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$ 세라믹스의 압전 및 전계유기 왜형 특성)

  • 윤현상;정회승;임인호;윤광희;김준한;박창엽
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.434-439
    • /
    • 1997
  • It this paper, the piezoelectric and electro-induced strain properties of (P $b_{1-}$2x/3/B $i_{x}$ )[N $i_{1}$3/N $b_{2}$3/)$_{0.4}$( $Ti_{0.6}$Z $r_{0.4}$)$_{0.6}$] $O_3$ceramics (x=0, 0.005, 0.02) were investigated with the substitution of B $i^{3+}$, and the feasibility of the application for bimorph actuator was evaluated by measuring the dynamic properties of the piezoelectric bimorph fabricated with above ceramics. Dielectric constant was enhanced with the increase of B $i^{3+}$ substitution, and appeared the maximum value of 5032 at x=0.01 composition. Increasing the substitution of B $i^{3+}$, the electromechanical coefficient( $k_{p}$ , $k_{31}$ ) was increased up to the substitution of 0.5 mol% B $i^{3+}$, showed the value of 0.656, 0.439, respectively. The piezoelectric constant( $d_{33}$ $d_{31}$ ) had the highest value of 344, 825 with the substitution of 0.5 mol% B $i^{3+}$. The strain, generated by 60 Hz AC electric field, had the largest value of 1200($\times$10$^{-6}$ $\Delta$1/1) in the composition with the substitution of 0.5 mol% B $i^{3+}$. The dynamic properties of the bimorph actuator, fabricated with the composition substitution of 0.5 mol% B $i^{3+}$, showed the largest value of 325 $\mu$m at $\pm$150 V square pulse. square pulse.are pulse..

  • PDF

Fabrication and Characteristics of High Brightness White Emission Electroluminescent Device (고휘도 백색방출 전계발광소자의 제작 및 특성)

  • Bae, Seung-Choon;Kim, Jeong-Hwan;Park, Sung-Kun;Kwun, Sung-Yul;Kim, Woo-Hyun;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.10-15
    • /
    • 1999
  • White emission thin film electroluminescent device was fabricated using ZnS for phosphor layer and BST ferroelectric thin film for insulating layer. For fabrication conditions of BST thin film, stoichiometry of target was $Ba_{0.5}Sr_{0.5}TiO_3$, substrate temperature was $400^{\circ}C$, working pressure was 30 mTorr, and A:$O_2$ ratio was 9:1. At this time, dielectric constant was 209 at 1kHz frequency. For phosphor layer ZnS:Mn, ZnS:Tb, and ZnS:Ag were used. Mixing rates of activators were respectively 0.8, 0.8, and 1 wt%. Total thickness of phosphor tapers was 500 nm, thickness of lower insulating layer was 200 nm, and thickness of upper insulating layer was 400 nm. In this conditions, luminescence threshold voltage of thin film electroluminescent device was $95\;V_{rms}$, maximum brightness was $3,000\;cd/m^2$ at $150\;V_{rms}$. Luminescence spectrum peak was observed at region of blue(450 nm), green(550 nm), and red(600 nm).

  • PDF

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

Evaluating Properties for Bi-layer PZT thin film Fabricated by RF-Magnetron Sputtering System (RF-마그네트론 스퍼터링법으로 제작한 이층형 PZT의 특성평가)

  • Lim, Sil-Mook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.222-227
    • /
    • 2020
  • Pb(Zr,Ti)O3(denoted as PZT) in the perovskite phase is used as a dielectric, piezoelectric, and super appetizer material owing to its ferroelectric properties. A PZT film was formed by an RF magnetron sputtering process by preparing a target composed of Pb1.3(Zr0.52Ti0.48)O3. The PZT film was formed by dividing the material into a mono-layer PZT produced continuously with the same sputtering power and a bi-layer PZT produced with two-stage sputtering power. The bi-layer PZT consisted of a lower layer produced under low-power sputtering conditions and an upper layer produced under the same conditions as the mono-layer PZT. XRD revealed small amounts of pyrochlore phase in the mono-layer PZT, but only the perovskite phase was detected in the bi-layer PZT. SEM and AFM revealed the upper part of the bi-layer PZT to be more compact and smooth. Moreover, the bi-layered PZT showed superior symmetry polarization and a significantly reduced leakage current of less than 1×10-5 A/cm2. This phenomenon observed in bi-layer PZT was attributed to the induction of growth into a pure perovskite phase by suppressing the formation of a pyrochlore phase in the upper PZT layer where the densely formed lower PZT layer was produced sequentially.

Development of Time Domain Reflectometry Probe for Evaluation of Copper Concentration in Saline Environment (염수환경에서의 구리 농도 평가를 위한 Time Domain Reflectometry 프로브 개발)

  • Lee, Dongsoo;Lee, Jong-Sub;Hong, Won-Taek;Yu, Jung-Doung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.15-24
    • /
    • 2018
  • As electromagnetic waves are affected by electrical conductivity or permittivity, they are widely used to evaluate geotechnical characteristics. In this study, a probe for measuring electromagnetic waves using a time domain reflectometry is manufactured to evaluate heavy metal concentration in saline water. In the experiments, a copper is used as a heavy metal, and a probe is demonstrated with the concentration of copper. Solutions were set for 8 different copper concentration (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 mg/L) in saline water with 3% salinity. The probe is coated by electrical insulating materials such as epoxy, top-coat, varnish, acrylic paint, heat-shrinkage tube to measure electromagnetic waves in saline water. The measured signals are compared according to coating material. As results, for probes coated with acrylic paint and heat-shrinkage tube, signal variation is not detected. For epoxy, top-coat, and varnish coated probes, the voltage decreases with an increase of copper concentration. Probes coated by epoxy at once and top coat can estimate under 5 mg/L of copper concentration and the probe coated by epoxy twice can estimate over 5 mg/L of copper concentration. This study shows that the probe using the time domain reflectometry can be used to evaluate the concentration of heavy metal in saline water by coating the probe with insulating material.