• Title/Summary/Keyword: Dielectric characteristics

Search Result 2,354, Processing Time 0.025 seconds

A Study of Patch Antenna for 6GHz (6GHz 대역용 패치 안테나 연구)

  • Yong-Wook, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1063-1068
    • /
    • 2022
  • The modern society has become entry into the information age after the spread of Internet. In the information age, internet was developed from the wired access to the wireless Internet access. When a surge in demand for wireless Internet access, performance and speed of 2.4 and 5GHz band for Wi-Fi which leads to saturation of the communication was significantly fall. Accordingly, the communication of the 6GHz band for Wi-Fi 6E came to be interested. In this paper, we studied the design and fabrication of microstrip patch antenna to be used in wireless communication systems operating at around 6GHz band. To obtain antenna parameters such as patch size, inter patch space, antenna was simulated by HFSS(High Frequency Structure Simulator). From these parameters, slot microstrip patch antenna is fabricated using FR-4 of dielectric constant 4.4. The characteristics of fabricated patch type microstrip antenna were analyzed by network analyzer.

Radiation Resistance Evaluation of Thin Film Transistors (박막트랜지스터의 방사선 내구성 평가)

  • Seung Ik Jun;Bong Goo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.625-631
    • /
    • 2023
  • The important requirement of industrial dynamic X-ray detector operating under high tube voltage up to 450 kVp for 24 hours and 7 days is to obtain significantly high radiation resistance. This study presents the radiation resistance characteristics of various thin film transistors (TFTs) with a-Si, poly-Si and IGZO semiconducting layers. IGZO TFT offering dozens of times higher field effect mobility than a-Si TFT was processed with highly hydrogenated plasma in between IGZO semiconducting layer and inter-layered dielectric. The hydrogenated IGZO TFT showed most sustainable radiation resistance up to 10,000Gy accumulated, thus, concluded that it is a sole switching device in X-ray imaging sensor offering dynamic X-ray imaging at high frame rate under extremely severe radiation environment such as automated X-ray inspection.

Fabrication and Microstructure of Metal-Coated Carbon Nanofibers using Electroless Plating (무전해 도금을 이용한 금속 코팅된 탄소나노섬유의 제조 및 미세조직)

  • Park, Ki-Yeon;Yi, Sang-Bok;Kim, Jin-Bong;Lee, Jin-Woo;Lee, Sang-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.43-48
    • /
    • 2007
  • The absorption and the interference shielding of electromagnetic wave have been very important issues for commercial and military purposes. The stealth technique is one of the most typical applications of electromagnetic wave absorption technology. This study has started for the development of composite fillers containing dielectric and magnetic lossy materials. To improve the electromagnetic characteristics of conductive nano fillers, carbon nanofibers (CNFs) with nickel-phosphorous (Ni-P) or nickel-iron (Ni-Fe) have been fabricated by the electroless plating process. Observations by the electron microscopy (SEM/TEM) and element analyzer (EDS/ELLS) showed the uniform Ni-P and Ni-Fe coated CNFs. The compositions of the plating layers were about Ni-6wt%P and Ni-70wt%Fe, respectively. The average thicknesses of the plating layers were about $50\;{\sim}\;100\;nm$.

A Study on Design and Microwave Characteristics of a RF/IR Multispectral Absorber (전자파/적외선 다중파장 흡수체의 설계와 초고주파 특성에 관한 연구)

  • Minah Yoon;Suwan Jeon;Youngeun Ra;Yerin Jo;Wonwoo Choi;Yukyoung Lee;Kwangseop Kim;Jonghak Lee;Kichul Kim;Taein Choi;Hakjoo Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2024
  • In this paper, a design for a radio frequency(RF) and infrared(IR) absorber with metasurfaces is discussed in microwave frequency bands. The RF absorber includes double layers of metasurfaces to operate in S- and X-bands. Effects of sheet resistance of the metasurfaces and thicknesses of dielectric supporting layers on reflection responses are investigated. An IR stealth layer incorporates an array of conductive grids with slits to reflect IR signals but to transmit RF signals and visible rays. Periodicity of the grids and slits is studied for transmission responses in the X-band and a surface area ratio. Reflection responses of the RF/IR multispectral absorber are found to be lower than -10 dB and -16 dB in the S- and X-bands, respectively, from full-wave simulation. Finally, the RF/IR multispectral absorber is fabricated and its reflection responses are measured to verify designed performance.

Secondary Phase Control of Lithium Ion-Substituted Potassium Niobate Ceramics via Stoichiometry Modification (화학양론 변화를 통한 리튬 이온 치환 니오브산 칼륨 세라믹의 이차상 제어 연구)

  • Tae Soo Yeo;Ju Hyeon Lee;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.533-540
    • /
    • 2024
  • In line with the development of electronic devices and technologies, the demand for improving ferroelectric materials' performance is increasing. Since K0.5Na0.5NbO3 (KNN), an eco-friendly ferroelectric material that does not use lead and has a high Curie temperature, it is attracting attention to its usability as a high-temperature dielectric, and various studies are being conducted to increase performance. In a KNN having a perovskite structure, there was a simulation result that the KNN has higher spontaneous polarization when the A-site in which sodium ions exist is replaced with lithium ions. If the simulation results can be proven experimentally, the application range of KNN-based ferroelectric materials will increase. To this end, we tried to manufacture a K1-xLixNbO3 (KLN) with high electrical characteristics by fabricating niobium-deficient and potassium-excessive compositions, which attempt was made to solve the stoichiometry problem by volatilization and suppress secondary phases. If KLN's secondary phase suppression and relative permittivity improvement are successful, it will contribute to meeting the demand for developing electronic devices.

Design and Fabrication of Multi-Band Antenna for WLAN and Sub-6GHz Band (WLAN 및 Sub-6GHz 대역을 위한 다중대역 안테나 설계 및 제작)

  • Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.845-852
    • /
    • 2024
  • In this paper, we propose mult-band antenna included Sub-6 GHz band for WLAN system. The proposed antenna has the fourth strip line and slot in the partial ground plane to obtain impedance matching. The total substrate size is 48.0 mm (W)×50.0 mm (L), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 26.0 mm (W2)×42.0 mm (L1+L2+4.0(L1+L2+4.0 mm+L8+L9) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 115 MHz (0.825 to 0.940 GHz) for 900 MHz band, 210.0 MHz (2.29 to 2.50 GHz) for 2.4 GHz band, 270.0 MHz (3.45 to 3.72 GHz) for 3.5 GHz band, and 930.0 MHz (4.95 to 5.88 GHz) for 5.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

Simulation of Potential Difference Analysis in Conductor-Dielectric Type Triboelectric Generator Using COMSOL Multiphysics (COMSOL Multiphysics를 활용한 도체-유전체 형태 마찰전기 발전기의 전위차 해석 시뮬레이션)

  • Yong Hoon Son;Geon-Tae Hwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.600-608
    • /
    • 2024
  • In the era of the Fourth Industrial Revolution, electronic devices are becoming increasingly miniaturized and lightweight to overcome spatial limitations, necessitating lower power consumption. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electrical energy, offer an ideal solution as small-scale power generators for these compact devices. Recent research has focused on various materials and structural designs to maximize the output of triboelectric energy harvesters, highlighting the growing importance of theoretical structure analysis software for precise evaluation. COMSOL Multiphysics software provides an accurate method for simulating the electrical characteristics of TENGs. This Tutorial Status Report introduces the process of modeling TENGs and analyzing their electrical output using COMSOL Multiphysics

Recent Advances in Electric Stimulus-Responsive Soft Actuators (전기자극 감응형 소프트 액추에이터의 최신 동향)

  • Seong-Jun Jo;Gwon Min Kim;Jaehwan Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.247-264
    • /
    • 2024
  • Recent advances in electro-active polymer (EAP) actuators, owing to their flexibility, lightweight, and simple fabrication process, have showcased their high utility across various fields such as soft robotics, biomimetics, wearable devices, and haptic technologies. Moreover, EAP actuators are evolving into smart devices with new functions and characteristics through the integration of functional materials and innovative technologies. This paper categorizes EAPs into ionic EAPs and electronic EAPs. Ionic EAPs include, most notably, ionic polymer-metal composites (IPMCs) and conducting polymers (CPs), while electronic EAPs encompass dielectric elastomer actuators (DEAs), ferroelectric polymer actuators, and the recently introduced hydraulically amplified self-healing electrostatic (HASEL) actuators. Detailed explanations based on the latest research are provided concerning the mechanism, structure, performance improvement strategies, methods for adding functionality, and application areas for each type of actuator.

Chip-to-chip Bonding with Polymeric Insulators (고분자 절연체를 이용한 칩투칩 본딩)

  • Ye Jin Oh;Seongwoo Jeon;Jin Su Shin;Kee-Youn Yoo;Hyunsik Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.87-90
    • /
    • 2024
  • Currently, when oxides are used as insulators in hybrid bonding for 3D integration, they are prone to delamination due to their surface characteristics, and the RC delay value due to the resistance of the metal and the capacitance of the insulator increases as the wiring of the semiconductor chip becomes longer. To solve these problems, we studied the optimization of the conditions of the polymer insulator bonding method for hybrid bonding. To check the possibility of the de-wetting method, we coated a polymer film on the existing micro pillar and conducted hot-press bonding to remove the polymer between the metals. Through this study, it is expected that the introduction of polymers as insulators in hybrid bonding and fine-pitch metal bonding will improve signal transmission speed by reducing RC delay. It is also expected to be commercialized in the future to increase the number of I/O terminals by applying it to hybrid bonding.

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.