• Title/Summary/Keyword: Die clearance

Search Result 124, Processing Time 0.025 seconds

Analysis of Tool Wear in Sheet Metal Shearing (판재 전단 가공에서 금형의 마멸 해석)

  • 고대철;김태형;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.805-810
    • /
    • 1997
  • In this paper the technique to predict tool were theoretically in the sheet metal shearing process is suggested. The were in sheet metal tool affects the tolerances of final parts, metal flows and costs of processes. In order to predict the tool were the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained form finite element simulation such as node velocities and node forces are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the were rates on these points are accumulated during a process. It is assumed that the wear depth on the tool surface are linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is were is also discussed during the process.

  • PDF

Evaluation of punching process variables influencing micro via-hole quality of LTCC green sheet (LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가)

  • Baek S. W.;Rhim S. H.;Oh S. I.;Yoon S. M.;Lee S.;Kim S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.260-265
    • /
    • 2004
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet and ceramic sheet and punch-to-die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor k is introduced to express effect of the process variables.

  • PDF

Finite Element Simulation of Sheet Metal Shearing by the Element Kill Method (요소제거기법에 의한 판재 전단가공의 유한요소 시뮬레이션)

  • Ko, Dae-Cheol;Kim, Chul;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.114-123
    • /
    • 1996
  • The major objective of the present paper is to estabilish analytical technique in order to closely understand and analyze the actual shearing process. First of all, isothermal and non-isothermal FE-simulation of the shearing process are carried out using finite element software DEFORM. Based on preliminary simulation using DEFORM, the finite element program to analyze two dimensional shearing process is developed. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. It can be seen that the developed program combined with the ductile fracture criterion and element kill method has enabled the achievement of FE-simulation from initial stage to final stage of shearing process. The effects of punch-die clearance on shearing process are also investigated. In order to verify the effectiveness of the proposed technique the simulation results are compared with the known expermental data. It is found that the results of the present work are in close agreement with the published experimental results.

  • PDF

The Development of Seat Track Parts Using Shape Freeze in UHSS (초고강도 소재 성형시 형상 동결을 이용한 Seat Track 부품 개발)

  • Park, Dong Hwan;Yun, Jae Jung;Moon, Hyun Duk;Lee, Tae Gil
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.59-65
    • /
    • 2017
  • A seat track product is a car seat part that provides a base for vehicle seats. An ultra-high strength steel sheet is used to reduce the weight of vehicle body parts. However, the formability of an ultra-high strength steel sheet is poor because of its very low elongation and very high elastic deformation. For this reason, a new forming technology of an ultra-high strength steel sheet is required. The influence of spring-back of seat track parts on the shape freeze in forming processes was investigated to be solved by adjusting the appropriate tool design such as minus clearance between punch and die, and punch angle. This paper describes how to apply the spring-back prevention technique for improving shape freeze by using the ultra-high strength steel sheet with 980MPa to develop lightweight seat tract parts.

Design of Half Blanking Process for Reducing Rollover and Stress Acting on Tools in Forming of Lower Tooth (로어투스의 롤오버 및 금형 면압 저감을 위한 하프블랭킹 공정 설계)

  • Jang, M.J.;Choi, H.S.;Lee, S.H.;Kim, D.S.;Lee, S.G.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.214-221
    • /
    • 2011
  • In recent years, automotive seat components have been manufactured by the fine blanking process, allowing an improvement of dimensional accuracy at sheared surface in series production. However, the rollover has increased and die failures have occurred more frequently when manufacturing gears by fine blanking. Consequently, important goals for manufacturing seat recliner parts with gears have been to decrease the rollover as well as to improve the tool life. In this study, the half blanking and shaving processes were introduced to improve aforementioned problems for the lower tooth, the main component of a seat recliner. For this purpose, the half blanking process was optimized using the finite element (FE) analysis and design of experiment (DOE). The optimized conditions resulting from this study were an offset of 0.2 mm, a clearance of 0.1 mm and a penetration depth of 4.5 mm. Fine blanking experiment conducted under the optimal condition resulted in a rollover depth decrease from 1.9 to 1.3 mm, and no die failure occurrence.

Effect of Cold Forming Method on Drawability in Trunk Floor Panel (냉각성형공법이 트렁크 플로어 드로잉성에 미치는 영향)

  • Choi C. S.;Choi Y. C.;Park J. H.;Oh Y. K.;Lee J. W.;Lee H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.113-119
    • /
    • 2000
  • This study is to investigate the effects of cold forming method with steel sheet of SCP3C to improve continuous productivity. Experiments were carried out in various working conditions, such as the number of stamping and the punch temperature. The effects of the punch temperature and the number of stamping on drawability of steel sheet of SCP3C as well as clearance and draw-in in tile number of stamping were examined and discussed. The cooled the punch and the die and the blankholder heated by stamping were achieved at continuous productivity and quality improvement. The optimum forming condition for drawing trunk floor panel of SCP3C is shown as the punch is cooled by coolant of $-5^{\circ}C$ and at the same time both the die and the blankholder are heated by stamping and frictional heat,

  • PDF

Form-Joining Process with the Aid of Adhesive for Joining of Sheet Metal Pair (중첩된 박판간의 결합을 위한 접착-성형공정)

  • 정창균;김태정;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.342-349
    • /
    • 2004
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair. The joining strength from the process ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of an adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, and before it cures the pair is clinched to cause the geometric constraint in the form of a protrusion. In order to reduce the forming load and the height of protrusions, a new die and punch set with a very small clearance is devised to reduce the depth of drawing and the forming load. Taguchi method is employed to find the optimal values of design parameters. To implement each case of the orthogonal array, the finite element method is used. The experiments show that in the tensile-shear test, the bonding strength of the new form-joining process with an epoxy adhesive is approximately the same as that of the resistance spot welding; and in comparison with the other two form-joining processes with an epoxy adhesive, the height of protrusions is reduced by more than 65 percent and the forming load by 50 percent.

Effects of Blankholding force and Vee-ring on the Blanking Characteristics in Fine-Blanking Die (정밀전단금형에서 판누름압력과 삼각돌기가 전단특성에 미치는 영향)

  • 이종구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.188-193
    • /
    • 1996
  • This study was performed the blankholding force and vee-ring effects on Blanking characteristics, such as maximum blanking force, burnish, dish-shape, hardness. etc, in fine-blanking die by the experimental method. Two types of aluminum (Al. 1050-0, Al 5052-H) Such as annealed and unannealed materials were used for the experiment. In order to get a hydrostatic pressure effect, the clearance was set to 0.5% of the thickness of strip, and the counter punch and stripper plate with Vee-ring was set-up. While this experiment was carrying out, the average blanking Velocity was constant (37.5mm/sec) As a result of this study, we got a good surface roughness and a glassy shear plane(burnish) of the sheet over 90% thickness, and such as the excellent accuracy of dimensions, the good squareness and the reduction of dish-shape could be obtained, and also the additional results obtained were such that the hardness of shear plane was increased and the maximum blanking force was reduced in the condition of Vee-ring height of 1.0~1.5mm, and blankholding force of 1200kg.

  • PDF

Blanking Process of Aluminum Thin Sheet for Lithium Ion Battery (리튬 이온전지용 알루미늄 박판의 블랭킹 공정에 관한 연구)

  • Kim, M.G.;Kim, J.H.;Shin, H.J.;Moon, J.H.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.179-185
    • /
    • 2021
  • Lithium ion batteries are generally manufactured by laser and etching using aluminum thin sheet. These processes are relatively expensive and have low productivity. In this study, blanking process of aluminum thin sheet for lithium ion battery was employed to replace laser cutting and etching process, all to reduce the production cost and improve productivity. Mechanical properties for aluminum and coating were determined by experimental results and rule of mixture for FE analysis of blanking process. Normalized Cockcroft-Latham criteria was also applied to describe shear behavior and critical damage values were determined by comparison of analytical and experimental result. We performed FE analysis to investigate the effects of clearance and punch-die radius on sheared surface of aluminum thin sheet and to determine optimal process condition. We manufactured the die set using the determined optimal process and conducted an experiment to confirm the feasibility of blanking process. The sheared surface of manufactured product was observed by optical microscope. As a results, the proposed process conditions successfully achieved the dimensional requirement in production of lithium ion battery parts.

Verification of load equations for sandwich plates during U-bending (샌드위치판재의 U-bending 공정에서 굽힘하중식의 검증)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.435-438
    • /
    • 2008
  • To verify the load equations, the load-stroke curves of the load equation that were analytically derived for sandwich plates were compared with those of the simulations in the case of the total thickness of 3 mm, the thickness of the face sheets of 0.5 mm, a gap between attachment points of 1.5 mm, and a thickness of the core element of 0.8 mm. The results of the comparisons showed that the overall analytic loads enable the prediction of the numerical loads irrespective of the change of the clearance, the radius of the die, and the radius ratio.

  • PDF