• Title/Summary/Keyword: Die bonding

Search Result 134, Processing Time 0.029 seconds

Die design for HIP'ing of Nickel-base Superalloys (초내열합금 HIP 성형을 위한 금형설계)

  • Lim J.S.;Yeom J.T.;Hou Bongliang;Park N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.139-142
    • /
    • 2004
  • Nickel base superalloys are widely used for high temperature applications due to heat resisting capability and corrosion resistance at high temperatures. Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720 and MM 247, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations fur low temperature plasticity deformation.

  • PDF

A Study on the Shear Deformation Behavior of Inner Structure-Bonded Sheet Metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Chung W. J.;Yang D. Y.;Kim J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.257-262
    • /
    • 2005
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

Semiconductor Laser diode Die bonding Using AuSn solder (AuSn 솔더를 사용한 반도체 레이저의 본딩)

  • Choi, S.H.;Bae, H.C.;Heo, D.C.;Han, I.K.;Cho, W.C.;Choi, W.J.;Park, Y.J.;Lee, J.I.;Lee, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.203-205
    • /
    • 2003
  • 레이저 다이오드를 p-side-down 방식으로 본딩하기 위하여 AuSn 솔더합금을 증착한 후 온도와 압력, 시간을 변화시켜 본딩상태를 조사하였다. CuW위에 adhsion layer와 확산방지층을 각각 $500{\AA}$$2000{\AA}$을 증착하였으며 솔더층으로 AuSn을 $2.6{\mu}m$ 증착 하였다. 열처리는 질소 분위기에서 행하였으며, 표면의 거칠기는 AFM으로 측정하였다.

  • PDF

A Study on the Shear Deformation Behavior of Inner Structure-Bonded sheet metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Kim J. H.;Chung W. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.33-38
    • /
    • 2004
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

  • PDF

The Enhanced LED Dispensing Processing System (개선된 LED 토출 공정 시스템)

  • Cho, Do-Hyeoun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.42-46
    • /
    • 2008
  • LED's production does Die bonding and Wire bonding on L/F board, and do epoxy dispensing to protect LED Chip and improve brightness. In this paper, we propose and realize a x-y-z axis robot mechanism detecting automatically eopxy's amount being filled, control data of pressure and time by the quantity automatic revision, and epoxy of the schedule amount dispensing.

Effect of Process Parameters and Kraft Lignin Additive on The Mechanical Properties of Miscanthus Pellets

  • Min, Chang Ha;Um, Byung Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.703-719
    • /
    • 2017
  • Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature ($T_g$) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.

Fabrication of a high performance microvalve using a multilayer piezoelectric actuator and its characteristics (적층형 압전 엑츄에이터를 이용한 고성능 마이크로 밸브의 제작과 그 특성)

  • Seo, Jung-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.390-391
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a micromachined piezoelectric valve utilizing a multilayer ceramic actuator (MCA). The micromachined MCA valve, which uses a buckling effect, consists of three separate structures: the MCA, the valve actuator die and the seat die. The valve seat die with 6 trenches was made, and the actuator die, which is driven by the MCA under optimized conditions, was also fabricated. After Si wafer direct bonding between the seat die and the actuator die, the MCA was also anodically bonded to the seat/actuator die structure. A polydimethylsiloxane (PDMS) sealing pad was fabricated to minimize the leak rate. Finally, the PDMS sealing pad was also bonded to the seat die and the stainless steel package. The MCA valve shows a flow rate of 9.13 sccm at an applied DC voltage of 100 V with a 50% duty cycle and a maximum non-linearity of 2.24% FS. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, as a medical bio-system and in the automobile industry.

  • PDF

Detection of Flip-chip Bonding Error Through Edge Size Extraction of X-ray Image (X선 영상의 에지 추출을 통한 플립칩 솔더범프의 접합 형상 오차 검출)

  • Song, Chun-Sam;Cho, Sung-Man;Kim, Joon-Hyun;Kim, Joo-Hyun;Kim, Min-young;Kim, Jong-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.916-921
    • /
    • 2009
  • The technology to inspect and measure an inner structure of micro parts has become an important tool in the semi-conductor industrial field with the development of automation and precision manufacturing. Especially, the inspection skill on the inside of highly integrated electronic device becomes a key role in detecting defects of a completely assembled product. X-ray inspection technology has been focused as a main method to inspect the inside structure. However, there has been insufficient research done on the customized inspection technology for the flip-chip assembly due to the interior connecting part of flip chip which connects the die and PCB electrically through balls positioned on the die. In this study, therefore, it is implemented to detect shape error of flip chip bonding without damaging chips using an x-ray inspection system. At this time, it is able to monitor the solder bump shape by introducing an edge-extracting algorithm (exponential approximation function) according to the attenuating characteristic and detect shape error compared with CAD data. Additionally, the bonding error of solder bumps is automatically detectable by acquiring numerical size information at the extracted solder bump edges.

Study of micro flip-chip process using ABL bumps (ABL 범프를 이용한 마이크로 플립 칩 공정 연구)

  • Ma, Junsung;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • One of the important developments in next generation electronic devices is the technology for power delivery and heat dissipation. In this study, the Cu-to-Cu flip chip bonding process was evaluated using the square ABL power bumps and circular I/O bumps. The difference in bump height after Cu electroplating followed by CMP process was about $0.3{\sim}0.5{\mu}m$ and the bump height after Cu electroplating only was about $1.1{\sim}1.4{\mu}m$. Also, the height of ABL bumps was higher than I/O bumps. The degree of Cu bump planarization and Cu bump height uniformity within a die affected significantly on the misalignment and bonding quality of Cu-to-Cu flip chip bonding process. To utilize Cu-to-Cu flip chip bonding with ABL bumps, both bump planarization and within-die bump height control are required.