• Title/Summary/Keyword: Die Material

Search Result 1,021, Processing Time 0.03 seconds

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

Study on the Computerization of Die Design for Bending Hook (후크 벤딩 금형 설계의 전산화에 관한 연구)

  • 조은정;정호승;정철우;조종래;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.450-456
    • /
    • 2002
  • Die desig for manufacturing hooks from steel wires has been depended on empirical procedures based on trial and error method. To design die, at first the curvature and bending angle of hook are computed by using AutoCAD and developed program which is composed of Visual Basic. Then spring back should be considered because the elastic recovery of material is very important in bending process. In this study, bending analysis of elastic-plastic materials is applied to predict curvature of hook and spring back. Therefore, systematic procedure of die design for bending hook is achieved to consider elastic recovery in terms of hook shapes. Experimental results are good agreement with calculated results.

A study on the defects of die casting mold for air-motor housings and on problem-solving measures (에어모터 하우징 양산용 다이캐스팅 금형의 불량과 대책에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • HI-WORTH T-32, a non-powered plasma cutter, is a portable cutter that utilizes compressor-plasma inverter. With a special air-pressure piston, the cutter is semiautomatic. When they were produced by die casting dies, the bodies or housings of the cutter have defects about 100 percent of defect rate due to blisters and thermal deformation. Therefore, they are produced by mechanical machining, which leads to a hike in material and machining costs and to the loss of productivity. And companies are left with insignificant profit margins. Besides mechanical machining, this study proposes to modify defective mold and cut down defective rate and boost productivity.

  • PDF

Evaluation of Formability Sensitivity to Die Design in Warm Square Cup Deep Drawing of AZ31 Sheet (AZ3l 판재의 온간 사각컵 디프드로잉에서 금형 설계에 대한 성형성 민감도의 평가)

  • Kim, G.D.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.120-125
    • /
    • 2007
  • Magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. Tn the present study, square cup deep drawing tests using the magnesium alloy AE31 sheet were experimentally conducted using the porches and dies with different edge radius to evaluate the formability sensitivity to the die design variables. The experimental results showed that the fracture position over the cup wall moved from the punch nose to the flange as the die temperature increased, and that the drawing depth change was more affected by the punch radius than the die radius.

Development of Hybrid Composite Die for the Production of the Supercapacitor (슈퍼커패시터 양산화를 위한 하이브리드 복합금형 개발)

  • Kwon, Hyuk Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.105-110
    • /
    • 2015
  • In this study, a high-speed procedure to be used in composite molding technology is developed for the production of a hybrid supercapacitor in a progressive and revolutionary current in a production system, as are the related operating conditions. Mold parts with solid modeling, the ease of programming of future mold product designs, tolerance management, and pre-explode tests by the building of a progressive die design system using Cimatron_E10 Die Design Software for the strip layout are done. The capacity of the super-hybrid composite mold design will save time and money through its verification of the manufacture of molds. We plan to apply this to future related products for production cost savings of more than 30% achieved by considering the components of the production costs, labor, and material costs of production as compared to conventional production methods.

Die-Sinking Electrical Discharge Machining with Dielectric Fluid Ejection System through the Inside of the Electrode (전극봉내 방전유 분산시스템에 의한 형조방전기공)

  • 왕덕현;우정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Experimental study if die-sinking electrical discharge machining(EDM) was conducted with rotating electrode system including inside hole for increasing the material removal rate(MRR). With the help of dielectric fluid flow through the inside according to the different internal diameter of the hole, the molten workpiece debris could be removed and flushed out during the EDM, Cold die alloy(SKD-1) was executed for different peak current and duty factor. From this study, the MRR was found to be increased with the peak current. The more MRR was obtained for the case of electrode inside diam-eter of 10 mm, but the MRR was decreased as the diameter near at the 4mm and 6mm. The values of surface roughness and roundness were analyzed under various conditions, and these were affected by the inside diameter change of electrode.

  • PDF

Effects of Machining Methods on the Surface Characteristics of Die Steel STD11 (금형강 STD11의 가공방법이 표면특성에 미치는 영향)

  • Choi, Kea-Kwang;Nam, Won-Jong;Lee, Yong-Shin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2004
  • The performance and life of a die are influenced by the machining methods. In order to examine the effects of machining methods on surface charactenstics, simple experiments are devised and performed. A die steel STD11, commonly used as a die material in press working, is selected. Three ways of machining methods to manufacture a die are considered. Those are (1) milling and then grinding, (2) wire-cut electric discharge dachining (W-EDM) and (3) heat treatment after W-EDM. The resulting surface roughnesses are measured. Also, the changes of surface microstructures are investigated using the scanning electron microscope(SEM) with energy dispersive X-ray spectrometer(EDS) and the results are discussed in details.

  • PDF

Experiment of Turbine Blade Hot Forging Process using Model Material and SLA Prototype Die Set (모델재료와 SLA 시금형을 이용한 터빈블레이드 열간단조공정의 모사실험)

  • Park, K.;Shin, M.C.;Yang, D.Y.;Cho, J.R.;Kim, J.S.
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 1995
  • In this paper, an experimental study of a hot forging process is carried out using plasticine and the die set manufactured with the aid of rapid prototyping. In order to manufacture the die set, Stereolithography Apparatus(SLA) which is most widely used rapid prototyping system is introduced. Turbine blade forging is performed using palsticine and the SLA prototype die set. Through the experiment, it has been shown that SLA prototype is suitable to the die set for the plasticine workpiece, and the formability and the forming load of turbine blade forging are predicted.

  • PDF

The Effect of Die Design and Process Condition in Precision Forging for AI7075 (ll) (AI7075합금의 정밀단조시 금형설계와 단조조건의 영향(ll) -유한요소해석을 중심으로-)

  • 이영선;이정환;이상용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.113-121
    • /
    • 1996
  • AI7075 alloy has been used for aircraft components since it has the advantage of high strength, high toughness, and high corrosion resistance. Many airframe components consist of various combinations of rib-web structure. In this study, various process paramenters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment and F.E.M. simulation to develop the precision forging technology for AI7075. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

A Study of the Torsional Forward Extrusion Using the Stream Function. (유선 함수를 이용한 비틀림 전방압출 공정에 관한 연구)

  • 이상인;김영호;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.329-332
    • /
    • 2002
  • The upper bound analysis by stream function is used to study the torsional forward extrusion. The torsional forward extrusion process not only reduces forming load but also increase optimal die angle. Optimal die angle is determined by the optimization technique. The advantages of this process are that the low capacity of pressing machine can be used and the process with a large die angle can be applied. To verify the theoretical result, we have carried out experiments using model material (plasticine) and FE simulations using DEFORM3D.

  • PDF