• Title/Summary/Keyword: Die Designing

Search Result 78, Processing Time 0.026 seconds

The Surface Roughness of Injection Product according to the change of Injection Conditions (성형조건에 따른 성형품의 표면 거칠기 변화)

  • Park, Joon-Hyoung;Kim, Kuy-Bok;Yoon, Se-Kwon;Lee, Hyeon-Woo;Kim, Sun-Kyung
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.12-17
    • /
    • 2014
  • Currently, injection molding process is a very useful technique that be applied to many field. And injection molding technology has been commercial based on many studies. However, there is no standard of surface roughness because there are few studies about surface technology of injection product. In addition, when designing the mold, changes of the core surface and the injection conditions are not considered. In this paper, change of surface according to the core and the injection conditions was compared with the surface of the injection product. Accumulation of these technologies will propose direction in mold design, manufacturing and injection molding technology.

  • PDF

A study on passenger air bag housing by injection molding analysis (자동차 승객용 에어백 하우징의 사출성형 해석 연구)

  • Choi, Doo-Yeol;Park, Jae-Il;Hong, Seok-Moo;Choi, Kye-Kwang;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.9-13
    • /
    • 2015
  • Plastic material has been applied to many automobile parts with the automotive lightweighting trend. In this study, a passenger air bag(PAB) housing which is produced by steel material in the present were molded using a plastics material. Before design and making of a mold for the PAB housing molding, it was carried out injection molding analysis. By analyzing the deformation results, the correction dimension for mold designing was determined. The design and manufacturing the mold applied the correction dimension were conducted. It was performed actual injection molding. The warpage value of the PAB housing was similar to the warpage of the injection molding analysis.

  • PDF

A Study of Algorithm for Press Layout Setup using Product design Data (제품 설계 데이터를 이용한 프레스 금형 Layout 설정을 위한 알고리즘에 관한 연구)

  • 이상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.391-396
    • /
    • 2000
  • Today most companies are designing their automobile shapes by using 3 dimensional CAD software, CATIA. And they used to design 2 dimensional press dies to do some elastic work on their products, but they are currently trying to make use of dimensional software, Pro-Engineer. In this case, they have to change the 3 dimensional product design data to the proper format data for the following process. This paper will show the data loss and the deformation during data transfer between CATIA and Pro-Engineer, and then suggest a solution for these problems. Product's surface will be automatically placed by automatic press tipping angle setting in CATIA to prevent the product from being stuck in the press die. The 2 dimensional section view which is based on the tipping angle setting is created by Z-map. And, to remove the data loss and the data deformation in pro-Engineer, the product surface are delivered to the next process after it is changed to the 2 dimensional Z-map curves in CATIA. finally, this paper suggests an algorithm to develop the automatic design program for the press layout which regenerates product shape surface from the previous process.

  • PDF

Development of An Optimal Layout Design System in Multihole Blanking Process

  • Lee, Sun-Bong;Kim, Dong-Hwan;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • The blanking of thin sheet metal using progressive dies is an important process on production of precision electronic machine parts such as IC leadframe. This paper summarizes the results of simulating the progressive blanking process by means of LS/DYNA. In order to verify the influence of blanking order on the final lead profile and deformed configuration, simulation technique has been proposed and analyzed using a commercial FEM code, LS/DYNA. The results of FE-simulations are in good agreement with the experimental result. After then, to construct rule base in progressive blanking process, FE-simulation has been performed using a simple model. Based on this result rule base is set up and then the blanking order of inner lead is rearranged. Consequently, from the results of FE-simulation using suggested method in this paper, it is possible to predict the shift of lead to manufacture high precision lead frame in progressive blanking process. The proposed method can give more systematic and economically feasible means for designing progressive blanking process.

A Study of Algorithm for Press Layout Setup using Product Design Data (제품 설계 데이터를 이용한 프레스 금형 레이아웃 설정을 위한 알고리즘에 관한 연구)

  • 이상준;이성수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.38-44
    • /
    • 2002
  • Today most companies are designing their automobile shapes by using 3 dimensional CAD software, CATIA. And they used to design 2 dimensional press dies to do some elastic work on their products, but they are currently trying to make use of 3 dimensional software, Pro-Engineer. In this case, they have to change the 3 dimensional product design data to the proper format data for the following process. This paper will show the data loss and the deformation during data transfer between CATIA and Pro-Engineer, and then suggest a solution for these problems. Product's surface will be automatically placed by automatic press tipping angle setting in CATIA to prevent the product from being stuck m the press die. The 2 dimensional section view which is based on the tipping angle setting is created by Z-map. And, to remove the data loss and the data deformation in Pro-Engineer, the product surface are delivered to the next process after it is changed to the 2 dimensional Z-map curves in CATIA. Finally, this paper suggests an algorithm to develop the automatic design program for the press layout which regenerates product shape surface from the previous process.

Design Method for the Intermediate Dies in Multi-Stage Shape Drawing: The Case for a Hollow Linear Motion Guide Rail (중공형 LM-Guide Rail 제조를 위한 다단 형상 인발공정의 중간 다이스 설계에 관한 연구)

  • Lee, K.H.;Kim, S.H.;Lee, S.B.;Kim, D.H.;Kim, S.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.155-160
    • /
    • 2015
  • One of the most important aspects in multi-stage shape drawing is the proper design of the intermediate dies especially to provide adequate metal distribution. In the current study, a method for designing the intermediate dies has been developed to manufacture hollow linear motion guide rails by multi-stage shape drawing. The design method is based on the modified virtual die method. The effectiveness of the proposed design method was verified by FE-simulations and experiments using Mn55Cr carbon steel. From the results of the FE-simulations and the experiments, the proposed design method led to a drawn product with a sound shape. The dimensional tolerances of the product were within the allowable specified tolerances.

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

Taguchi-based robust design for the footwear outsole pelletizing machine cutter (다구찌 방법을 이용한 신발 아웃솔 펠레타이징 기계 절단부의 강건설계)

  • Kwon, Oh-Hun;Koo, Pyung-Hoi;Kwon, Hyuck-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.4
    • /
    • pp.935-949
    • /
    • 2016
  • Purpose: This study attempts to find out the optimum condition of the rotary cutter making pellet in the footwear outsole process. The pellets are used in the process of outsole rubber fabrication to reduce cycle time and save raw material. Methods: Computer simulations are used to analyze the maximum stress in the rotary cutter after designing a variety of cutter shapes. Taguchi method is used to identify the robust condition of the cutter. In $L_{18}$ orthogonal array, the control factors such as knife width, twisted angle, number of knives, diameter, knife depth and supported angle are considered and noise factors like assembly tolerance and amount of antifriction are allocated. Results: It is found that the most important factors to reduce maximum stress in the cutter are supported angle and diameter. Using Tacuchi's results, we can reduce 70% cycle time and 9% raw material compared to the traditional method using cutting die. Conclusion: When designing the rotary cutter, the best conditions are the diameter at its maximum allowable value and supported angle in the boundary of machine inner space.

The Use of Finite Element Method to Predict the Hot Shear-Welding Process of Two Aluminum Plates

  • Shang, Li-Dong;Lee, Kyeng-Kook;Jin, In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.426-430
    • /
    • 2008
  • Hot shear-welding is a process of bonding two plates together by using shearing stress in a controlled manner. This study dealt with the hot shear-welding process of two aluminum plates. These two plates were piles up in the shear-welding mold. Due to the shearing stress, these two plates were cut off longitudinally, and meantime they were welded together. During this process the control of the surplus material flow is very important, and it can be realized by designing the overlapping length and the shape of the cavity. The commercial software Deform-3D was employed to predict the effect of these two factors. The overlapping length and the shape of the cavity that presents the optimum design was then developed to get a good shear-welding process.

  • PDF

Profile Ring Rolling Manufacturing Technology of Alloy 718 (초내열합금 링제품의 형상링 압연 제조 기술)

  • Kim, T.O.;Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.425-428
    • /
    • 2009
  • Aerospace engine application needs to stand high temperature and pressure. Because of its mechanical properties such as high strength at high temperature, Alloy 718 is used aerospace engine application about 80%. But alloy 718's mechanical properties cause some problem to manufacturing profile ring like damage of material and mold. In this study, alloy 718's mechanical properties investigated for knowing its formability and using FE-Simulation for designing profile ring roll process and mold shape. Profile ring rolling processing is designed with "Initial material$\rightarrow$Blank$\rightarrow$Linear Ring$\rightarrow$Profilering". Blank's heating temperature is setting $1100^{\circ}C$ for manufacturing a trial profile ring on the basis of FE-Simulation. As a result of manufacturing alloy 718 profile ring, it is possible to make near target profile shape ring with all of the processing condition which gives in this study.

  • PDF