• Title/Summary/Keyword: Die Design Parameters

Search Result 231, Processing Time 0.023 seconds

A CAD/CAM System for Axisymmetric Deep Drawing Processes (축대칭 디프-드로잉 공정의 CAD/CAM 시스템)

  • Park, S.B.;Choi, Y.;Kim, B.M.;Choi, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.27-33
    • /
    • 1996
  • In this study, a CAD/CAM system for axisymmetric deep drawing processes has been developed. An approach to the system is based on the knowledge based system. Under the environment of CAD/CAM software of Personal Designer, the system has been written in UPL. The geometries of intermediate and final object in deep drawing process, including processes parameters are input for the CAD/CAM system. The input data can be obtained from the results of Pro_Deep. The parts drawing of die sets for each process is generated in tool design module of the CAD/CAM system. Also. the die assembly drawings can be obtained. NC commands for machining of the part can be generated in the developed CAD/CAM system.

  • PDF

Analysis-based Die Face Design for the Improvement of Surface Quality for a Heat Protect Panel of an Automobile (차량용 열차단판의 면품질 개선을 위한 성형해석 기반 금형면 설계)

  • Kim, K.P.;Kim, S.H.;Lee, D.G.;Jang, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.278-283
    • /
    • 2008
  • This paper concerns the die face design for a heat protect panel aided by the finite element forming analysis in order to eliminate the surface defect and to improve the surface quality. The CAE procedure of the stamping process is introduced in order to reveal the reason of surface inferiorities and to improve surface quality. Complicated shape of the product induces the surface inferiorities such as wrinkling due to the insufficient restraining force of the forming blank and the non-uniform contact of the blank with the tools. This paper proposes a new guideline for the die design which includes the modification of tool shapes and addition of the draw-beads on the tool surface for ensuring the increased the restraining force with the uniform contact condition. The effectiveness of the proposed design is verified by the forming analysis and is confirmed by the tryout operation in the press shop. The analysis and test results show that the modified process parameters such as tool shapes and draw-beads can reduce the tendency of wrinkling and improve surface quality.

Design of drawing process of 9Ni-4Co-0.3C steel to make a large pressure vessel (대형 압력용기 제작을 위한 9Ni-4Co-0.3C 강의 드로잉공정 설계에 관한 연구)

  • Hong Jin Tae;Lee Seok-Ryul;Kim Kyung Jin;Yang Dong Yol;Lee Kyung Hun;Choi Moon Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.93-99
    • /
    • 2005
  • In this work, computer-aided process design is carried out to develop an optimal preform of a pressure vessel. Knowledge-based rules are employed to design the preform, and they are formulated using the handbooks of plasticity theories. In the FE-analysis, a commercial finite element code, ABAQUS was employed. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed fur various combinations of die design parameters. The length of the land of die, the clearance between punch and die and the clearance between the blank holder and die are optimized to minimize the forming load. The results of the simulations are verified with the experiments which are scaled down to one tenth of the actual size.

Effects of Mandrel and Die Shape in Seamless Tube Drawing (이음매 없는 관 인발에서 맨드렐과 금형 형상의 영향)

  • Lee, Y.S.;Yoon, S.H.;Yoon, D.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.562-567
    • /
    • 2011
  • This paper deals with effects of certain important factors in a tube drawing operation, such as the use of a mandrel, die radius and tangential angle at die outlet, on the deformation behavior of a small-diameter seamless tube. Both experimental and finite element simulation studies are carried out to assess the effects of the above parameters. Experiments and finite element predictions are compared. The use of a mandrel simplifies the design of tube drawing, but also induces some difficulties from increased process complexity. The effects of die outlet tangential angle and radius are discussed in detail.

Design of automotive inner panel by sectional forming analysis (단면성형 해석에 의한 자동차 내부 판넬의 설계)

  • 금영탁;왕노만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-59
    • /
    • 1990
  • A finite element program was developed using line elements for simulating the stretch/draw forming operation of an arbitrarily-shaped plane-strain section. An implicit, incremental, updated Lagrangian formulation is employed, introducing a minimum plastic work path assumption for each time step. Geometric and material nonlinearities are also considered within each time step. The finite element equation is based on the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The membrane approximation is adopted under the plane stress assumption. The sheet material is assumed to obey a rigid-viscoplastic constitutive law. The developed program was tested in the die-tryout of typical automotive inner panels. In order to determine a single friction coefficient and boundary length, FEM results and measurements of thinning for a stretched section of final die were compared. After finding analysis parameters, the sheet forming operations of original and final die designs were simulated. Excellent agreement between measured and computed thickness strains was obtained and the developed program was able to identify die designs which were rejected during die tryout.

  • PDF

Automatic drawing die design using visual Lisp & DCL (Visual Lisp & DCL을 이용한 인발 금형 자동 설계)

  • 권혁홍;이원복;이용훈;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.296-300
    • /
    • 2003
  • Design of drawing dies used in real industrial environments. It was designed by CAD software in many small & medium companies, but many products require various types, and sizes. Therefore, many companies are required to reduce process time and design mistakes. In this paper, for the automatic design of drawing dies, Design process considered that easy to team and use. which are used with Visual LISP/DCL language in a commercial CAD package, AutoCAD. It has adopted GUI in design system, and has applied DCL language. The system is based on the knowledge base system which is involved a lot of expert's know-how We have built database of design type and detail sizes. The automatic design system requires basic product type and sizes. Then the system accesses to the database and find out sizes by comparing with input parameters and generate drawing dies file.

  • PDF

Development of Automatic Program for Drawing Die Design (인발금형설계 자동화 프로그램 개발)

  • Kwon Hyuk-Hong;Lee Bong-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.60-66
    • /
    • 2005
  • Design of drawing dies was used In real industrial environments. It was designed by CAD software in many small & medium companies, but many products require various types, and sizes. There(ore many companies are required to reduce process time and design mistakes. In this paper, it was developed the automatic program in order to learn and use easily for design of the drawing dies. It was composed with Visual LISP/DCL language in a commercial CAD package, AutoCAD, and CUI in design system. The system is based in the knowledge base system which is involved a lot of expert's know-how. We have built database of design type and detail sizes. The automatic design system requires basic product type and sizes, and then the system accesses to the database and finds out sizes by comparing with input parameters, after then finally generates drawing dies file.

An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석)

  • 조현중;박종진;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

Design of the Cross Sectional Shape of Intermediate Die for Shaped Drawing of Spline (스플라인 이형인발을 위한 중간 다이 단면형상 설계)

  • Lee, J.E.;Lee, T.K.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.627-632
    • /
    • 2008
  • The cross sectional shape of intermediate die is one of important parameters to improve dimensional accuracy of final product in shaped drawing process. Until now, it has been designed by the experience or trial and error of the expert. In this study, the cross sectional shape of intermediate die for spline shape is determined by the electric fields analysis and scale factor method. The result of the electric fields analysis and scale factor method have been compared with that of the expert method. The effects of cross sectional shape on the dimensional accuracy were investigated by using FE-simulation. And then the multi-stage shaped drawing experiments were performed to verify the results of FE-simulation. As a result, the cross sectional shape from the electric fields analysis and scale factor method had the good dimensional accuracy. These two methods can be used for the method to obtain the cross sectional shape of intermediate die in shaped drawing process.

Numerical Study of Secondary Coating Die Geometry Effects on High Speed Optical Glass Fiber Coating Process (광섬유 2차 코팅다이 형상 변화에 따른 유리섬유 고속 코팅공정 영향성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • The protective double layer polymer coatings on silica optical fibers are realized by wet-on-wet liquid coating process and they play an important role in final quality of mass produced optical fibers. This numerical study aims to analyze the effects of secondary coating die design parameters by employing two dimensional axisymmetric model of coating cup and coating die geometry and computational fluid dynamics simulations which include temperature dependent viscosity of polymer coating liquids and viscous dissipation heating. Under high speed fiber drawing conditions and pressurized coating liquid supply, the effects of converging die angle are investigated in order to appreciate the change of coating liquid flow patterns such as flow recirculation zone near coating die as well as primary and secondary coating layer thicknesses. The auxiliary coating die to converging coating die is also tested and the results find that this concept is advantageous in achieving stable double layer coatings on silica glass fiber.