• Title/Summary/Keyword: Die Design Parameters

Search Result 231, Processing Time 0.02 seconds

Analytical Considerations on Some Design Parameters of Flat-Die Extrusion Processes (평금형 압출공정 설계 인자에 대한 해석적 고찰)

  • Lee C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.98-101
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the rigid-plastic finite element method. The effect of loaction of extrusion profile, arrangement of multiple extrusion profiles, and design of various die land has been investigated through the analysis. Several numerical examples of flat-die extrusion, such as C-section, multiple U- shape, and window guide extrusion, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords much more uniform distribution of axial velocity

  • PDF

The Analytical Consideration for Several Design Parameters of Flat-Die Extrusion Processes (평금형 압출공정 설계 인자에 대한 해석적 고찰)

  • 이창희;양동열
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.551-557
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the finite element method. The effects of the location of an extrusion profile, arrangement of multiple extrusion profiles, and the design of various die land have been investigated through the analysis. Several numerical examples of flat-die extrusion of such as C-section, multiple U-shape, and a window guide section, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords more uniform distribution.

  • PDF

A study on the extrusion forming characteristics of construction materials with die and process parameters (금형 및 공정변수에 따른 층상복합재료의 압출성형 특성에 관한 연구)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. The main design parameters influencing on deformation pattern are diameter ratio of the composite components and semi-die angle. Efforts are focused on the deformation patterns, velocity gradient, predicted forming load and the end distance through the various simulations. Simulation results indicate that there is an obvious difference of forming pattern with various diameter ratio and semi-die angle. The analysis in this paper is concentrated on the evaluation of the design parameters on the deformation pattern of composite rod.

  • PDF

Quantitative Analysis of Effect of Shrink Fit in Cold Forging (냉간단조에서 금형 열박음 영향의 정량적 분석)

  • Li, Qiushi;Kim, Min-Cheol;Jung, Dong-Chan;Son, Yo-Hun;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, magnitude of shrink fit, dimension of shrink ring, number of shrink rings, partition of die insert and clamping force on effective stress and circumferential stress are analyzed. It has shown that the number of shrink rings, magnitude of shrink fit, and Young's modulus of die insert material have strong influence on compressive circumferential stress in die insert but that the influence of the other design parameters is relatively weak.

Optimization of Die Design for Tube Cold Extrusion using Taguchi Method (다구치 방법을 이용한 튜브 냉간 압출 금형의 최적화)

  • Lim, S.S.;Lim, S.J.;Choi, H.J.;Cho, C.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.153-158
    • /
    • 2006
  • Nowadays, hollow upper-shaft of monobloc type has been considered for weight reduction and high quality in the automobile industry. To form the upper-shaft under tube cold extrusion, Taguchi method is applied to optimize the die design in this study. Taguchi method for optimum die design is to establish the optimal combination of design parameters and to reduce a number of experiments. Effect of parameters including the die relief, mandrel, die half angle is investigated and analyzed based on FEA analysis using a FEM commercial software MSC_Marc. Furthermore extrusion experiments have been performed to verify the results investigated in the FEM simulations.

  • PDF

Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels (자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링)

  • Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

A study on the design of a strip Lay-out for trimming tool of the automobile bonnet (자동차 본네트 트림 금형 스트립 레이아웃 설계에 관한 연구)

  • 정효상;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.675-681
    • /
    • 2002
  • Parametric modeling and configuration design method are a important methods for rapid design in manufacturing. This paper proposes a relation rules which parametrically models a bonnet trimming tool based on Pro/Engineer. The concept of desogn is applied a trimming die of the bonnet outer panel. Trimming die have a many parameters. Each a parameter is related the die face and punch profile. A design system consists of a Pro/Engineer, a Pro/program.

  • PDF

Die Casting Process Design for Front Housing of Aircon Compressor by Using MAGMAsoft (MAGMAsoft를 이용한 Aircon Compressor Front Housing의 다이캐스팅 주조공정설계)

  • 공성락;박진영;김억수;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.413-420
    • /
    • 2000
  • In the die casting process, the flow of liquid metal has significant influence on the quality of casting products and die life. For the optimal process design of front housing part of aircon compressor, various analyses were performed in this study by using computer simulation code, MAGMAsoft. The simulation has been focused on the molten metal behaviors during the filling and solidification stages for the sound casting products. Two cases of casting design that have different types of gating system are considered in the analysis. The potential sites where the casting defects may occur is examined by computer simulation and an improved design process is proposed. Also the effect of partial squeeze on the quality of casting products is considered and the optimal time lag after filling process is determined. For the die-stability, the effect of operational parameters such as die temperature, heat cycle and spot cooling on the die life has also been analyzed.

  • PDF

An Investigation of Thread Rolling Characteristics of Titanium Micro-Screws according to Die Design Parameters (금형설계 변수에 따른 마이크로 티타늄 나사 전조공정의 성형 특성 고찰)

  • Lee, Ji Eun;Kim, Jong-Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Micro-screws can be defined by their outer diameter of generally less than 1 mm. They are manufactured by head forging and thread rolling processes. In this study, the thread rolling process was numerically analyzed for a micro-screw with a diameter and pitch of 0.8 and 0.2 mm, respectively. Through finite element (FE) analysis, the effects of two design parameters (die gap and chamfer height) on the dimensional accuracy were investigated. Three combinations of chamfer heights were chosen first and the corresponding die gap candidates selected by geometric calculation. FE analyses were performed for each combination and their results indicated that the concave chamfer height should be less than 0.3 mm, while a 10 ?m difference in the die gap might cause degeneration in dimensional accuracy. These results conclude that ultra-high accuracy is required in die fabrication and assemblies to ensure dimensional accuracy in micro-screw manufacturing.

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF