• 제목/요약/키워드: Die Angle

검색결과 287건 처리시간 0.03초

수치해석을 이용한 코그메틱용 스프레이 미립화를 위한 부품설계 및 금형 설계에 과한 연구 (A study about design of main parts and injection molds for atomization of cosmetic spray using finite element method)

  • 서형진;손창우;장영주;양우;서태일
    • Design & Manufacturing
    • /
    • 제9권2호
    • /
    • pp.25-29
    • /
    • 2015
  • This paper presented characterization of spray velocity and angle of spray nozzle systems for cosmetic products. Diameter and length of nozzle orifice were chosen as shape factors of the spray system. Spray orifice of the spray pattern is a factor influencing the quality of the product. Fluid analysis was conducted by using "Fluent" to obtain spray angle and velocity. RSM (Response Surface Method) was used to approximate the relationship between these 2 factors and spray characteristics. To evaluate the proposed method, experimental work with existing was conducted and good agreement between simulation and experimental results.

  • PDF

전단-신선 가공된 6063 알루미늄 합금의 변형거동 (Deformation Behavior of 6063 Al Alloy Deformed by Shear-Drawing Method)

  • 고영건;이병욱;신동혁
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.291-297
    • /
    • 2011
  • This work investigated the microstructure and mechanical properties of 6063 Al alloy fabricated by shear-drawing (SD) technique where shear and drawing strains were combined together within a predetermined die. To find the optimum condition for sound deformation, three different dies having different inner angle and diameter of the exit channel were prepared. After single deformation of the present sample, the sound deformation took place without an abrupt failure of the sample if the inner angle would be greater than $135^{\circ}$ in this study, when the channel diameter of the SD die was reduced from 10 to 9 mm. Microstructural observation showed that the inner angle of $135^{\circ}$ was found to be more effective than that of $150^{\circ}$ in terms of the alignment of each grain to the shear direction imposed by SD method. In addition, the yield strength of the SD-deformed sample was twice higher than that of the initial counterpart while loosing ductility in tension.

웨이퍼 다이 위치 인식을 위한 명암 영상 코너점 검출 (Comer Detection in Gray Lavel Images for Wafer Die Position Recognition)

  • 나재형;오해석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권6호
    • /
    • pp.792-798
    • /
    • 2004
  • 본 논문에서는 웨이퍼 영상에서 다이 위치를 인식하기 위한 새로운 코너점 검출 방법을 제안한다. 웨이퍼 다이 위치 인식은 WSCSP(Wafer Scale Chip Scale Packaging)기술에 필수적인 과정으로서 웨이퍼 윗면의 다이 패턴을 얼마나 정확히 인식하느냐에 따라서 후 공정의 정확도가 결정된다. 본 논문에서는 정확한 다이 위치를 인식하기 위하여 계층적 명암 영상 코너 검출 방법을 제안한다. 새로운 코너 검출자는 코너 영역을 마스크 크기에 따라서 동심원으로 나누어 각각의 동심원에서의 코너성과 방향성을 구하여 정확한 코너점을 검출하도록 하였다. 또한 계층적 구조를 가지고 처리하여 기존의 명암 영상코너 검출자 보다 더 빠른 처리 속도를 얻을 수 있도록 하였다.

축대칭 압출금형의 피로수명예측에 관한 연구 (A Study on the Prediection of Fatigue Life in the Axi-symmetric Extrusion Die)

  • 안수홍;김태형;김병민;최재찬;조해용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.235-239
    • /
    • 1994
  • In this paper, the fatigue behaviour of typical axisymmetric forward extrusion die is investigated and extrusion process is analyzed by the rigid-plastic finite element method and elasto-plastic finite element method. To approach the crack problem involving crack initiation and propagation in extrusion die, LEFM(Linear Elastic Fracture Mechanics) is introduced and singular element which models stress.strain singularity in the crack tip vincity has been used to obtain an accurate stress intensityu factor values and other results. Form the displacement around the crack tip the stress intensity factor and the effective stress intensity factor at the beginning of the die inlet radius has been calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law to this data the angle and direction of fatigue crack growth has been simulated and these are compared with some experimental results. Using the computed crack growth rate, fatigue life of the extrusion die has been evaluated.

  • PDF

부틸고무의 압출을 위한 압출해석 및 다이설계 (Computer Simulation of Extrusion and Die Design for the Extrusion of Butyl Rubber)

  • 최태균;이희주;류민영
    • Elastomers and Composites
    • /
    • 제49권4호
    • /
    • pp.275-283
    • /
    • 2014
  • 건축용 접착제로 활용되고 있는 부틸고무는 주로 시트의 형태로 사용된다. 본 연구에서는 컴퓨터 해석을 통해 부틸고무 시트 압출용 다이를 설계하였다. 압출용 다이의 내부는 크게 매니폴드와 랜드로 나뉜다. 매니폴드는 다이중앙에서 유입되는 재료가 폭 방향으로 흐름이 이루어 지도록 하는 역할을 한다. 랜드는 재료가 흐름 방향으로 균일하게 흐르게 하여 균일한 두께의 시트가 성형되도록 한다. 다이는 매니폴드와 랜드 외에도 아일랜드를 설치하여 흐름의 안정을 주도록 하는 경우가 많다. 본 연구에서는 컴퓨터 해석을 통하여 다이에서 매니폴드의 각도와 길이, 랜드 길이 그리고 아일랜드를 설계 변수로 하여 다이 출구에서 다이 폭 방향으로 균일한 흐름이 형성되도록 하는 최적의 다이형상을 연구하였다.

유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석 (The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method)

  • 정병길;배진우;성낙창
    • 한국환경과학회지
    • /
    • 제16권10호
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증 (Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator)

  • 강병권;곽봉석;윤만중;전재영;강범수;구태완
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.

블랭킹 금형의 펀치 전단 각 변화에 따른 변형 특성 연구 (A Study on the Deformation Characteristics of Blanking Mold by the Change of Punch Shear Angle)

  • 송종원;김태군
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.13-19
    • /
    • 2023
  • Blanking processing is one of the shear processing method in which the cut part becomes a product and piercing processing is a press molding process in which the cut part is discarded as a scrap. The shear angle of the punch used for blanking is determined by conditions such as the characteristics of the shear material, shear thickness and shear length. The shear angle of a punch is an important factor in determining the size of the shear load, the life of the shear punch, the deformation of the shear product and the quality of burrs In this study, blanking punches applied with four types of shear angles (i.e., 0°, 0°23", 0°46", 0°69") to the blanking punches of bracket products used in practical work were manufactured and tested. In the blanking experiment, the remaining variables except for the shear angle were the same. Experiments show that the product has the least amount of deformation in blanking punches with a shear angle equal to the material thickness, i.e., 0°46"..

  • PDF

소결 금속 의 압출 에 관한 연구 (Extrusion of Sintered Porous Metal)

  • 오흥국;이정근
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.57-64
    • /
    • 1984
  • Forward extrusion of sintered porous metal through conical converging die is analyzed using slab method on the basis of plasticity theory for porous metal. It is taken into consideration in the analysis that the material in the container is continuously recompressed on densified until the process reaches steady state. Extrusion pressure and distribution of relative density from the die inlet to the outlet are calculated under various process variables. The results are useful in finding initial relative density of the billet, reduction of area and cone angle of the die in order to get required final products. Experiments are done for porous copper and then compared with the computed results.

등통로각압축 (ECAP) 공정에서 다이 마찰 효과에 대한 수치적 연구 (A Numerical Investigateion of the Effect of Die Friction in ECAP (Equal Channel Angular Pressing))

  • 서민홍;김형섭
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.219-225
    • /
    • 2000
  • Equal channel angular pressing (ECAP) is a convenient forming process to extrude material without substantial changes in the sample geometry and this deformation process gives rise to produce ultrafine grained materials. The properties of the materials are strongly dependent on the plastic deformation behaviour during ECAP. The major process variables during ECAP are 1) die geometries, such as a channel angle and coner angles, and 2) the processes variables, such as lubrication and deformation speed. In this study, the plastic deformation behaviour of materials during the ECAP has been theoretically analysed by the finite element method (FEM). The effect of the die friction on the plastic deformation behaviour during the pressing is discussed by means of FEM calculations.

  • PDF