• Title/Summary/Keyword: Die & Mold Design Engineering

Search Result 414, Processing Time 0.023 seconds

Development of Lightweight Moving Table for Linear Motor using Composite Materials (복합소재를 사용한 직선모터용 경량이송테이블 개발)

  • Hwang, Young-Kug;Eun, In-Ung;Lee, Choon-Man;Seo, Yong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Linear motors are efficient mechanism that offers high speed and positioning accuracy. By eliminating mechanical transmission mechanisms, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. Therefore, it is necessary to design moving table with high stiffness, high efficiency and light weight construction. This paper presents the development of moving table using composite material. In order to develop light weight construction of moving table, finite element analysis is performed to find best moving table construction and composite stacking sequence. NASTRAN and MINITAB were used as the optimizer. A prototype for the moving table using composite material was created.

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

A study on the effect of clearance on shear surfac shape during shaving processing of high strength steel plate (SPFH590) using CAE (CAE를 활용한 고강도강판(SPFH590)의 셰이빙 가공 시 클리어런스가 전단면 형상에 미치는 영향에 관한 연구)

  • Si-Myung Sung
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.23-28
    • /
    • 2024
  • The automobile industry is a wide range of related industries, including parts manufacturing and vehicle assembly, press processing is an essential element in making automobiles. Press processing is a processing method for metal sheets that has relatively high dimensional and shape precision and is suitable for mass production. It refers to processing by attaching a special tool, a mold, to a press machine. Recently, the automobile industry is attempting to reduce the weight of automobiles in order to reduce carbon emissions due to global warming, and the use of high-strength steel sheets, which are lighter than general structural steel sheets, is a natural trend. Shear processing is required to use high-strength steel, and the shape of the shear surface created by shear processing has a significant impact on the quality of the automobile. Therefore, various methods are being attempted to improve the share surface during shear processing. Among them, shaving processing is a method of shearing the primary shearing area again, and it is difficult to obtain an accurate answer because complex deformation occurs in the microscopic shear area. Therefore, in this study, the effect of machining allowance on shaving processing was analyzed using the finite element method using high-strength steel plate (SPFH590), and the differences were compared and examined through actual experiments under the same conditions.

A study on measuring friction vibration in flange area during deep drawing process (프레스 딥 드로잉 가공 시 플랜지부의 마찰진동 측정에 관한 기초연구)

  • Jae-Woong Yun
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.8-13
    • /
    • 2023
  • In this study, it was studied whether a new measurement factor "frictional vibration" that occurs due to the material flow of the die and sheet metal in the flange area during deep drawing process, could be measured using an vibration sensor. The blank holder force acting on the flange area during drawing processing acts as a friction force in the opposite direction into which the sheet material flows and causes friction vibration. As the blank holder force increases, the friction force increases, and as the blank holder force decreases, the friction force also decreases. Because of this, friction vibration also increases and decreases in proportion to the size of the blank holder force. According to this theory, whether frictional vibration occurs was measured using a flange simulator and a vibration sensor. The initial pressure was created using a torque wrench, and it was confirmed that the amplitude increased by about 4 times when torque 6 Nm was increased. When the forming velocity was rapidly changed to 300 mm/min, the amplitude increased approximately 4 times. It was confirmed that the amplitude of frictional vibration according to the measurement location was greater the further away from the specimen. It was verified that a new measurement factor "friction vibration" in the flange area can be measured and used for online monitoring.

Robust Design of Gate Locations and Process Parameters for Minimizing Injection Pressure of an Automotive Dashboard (자동차 대시보드의 사출압력 최소화를 위한 게이트 위치와 공정조건의 강건설계)

  • Kim, Kwang-Ho;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.73-81
    • /
    • 2014
  • In this paper, multiple gate locations and process conditions under concern are automatically optimized by considering robustness to minimize the injection pressure required to mold an automotive dashboard. Computer simulation-based experiments using orthogonal arrays(OA) and a design-range reduction algorithm are consolidated into an iterative search scheme, which is then used as a tool for the optimization process. The robustness of a design is evaluated using an OA-based simulation of process fluctuations due to noise as well as the signal-to-noise ratio. The optimal design solution for the automotive dashboard shows that the robustness of the injection pressure is significantly improved when compared to the initial design. As a result, both the die clamping force and the pressure distribution in the part cavity are also much improved in terms of their robustness.

A Study on the Structural Design of Linear Motor System (리니어모터 시스템 구조설계에 관한 연구)

  • Eun I.E.;Lee C.M.;Hwang Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1059-1063
    • /
    • 2005
  • Development of a feed drive-system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, due to great power loss and magnetic attraction of the linear motors heating and deflection problems occur. Therefore, it is necessary to design strong structure, cooling device with high efficiency and light weight construction in designing stage of linear motors. This paper presents an investigation into a structural design of linear motor system. In this research, a new concept of moving table with high stiffness and of cooling plate is also introduced. Structure analyses are performed by using a commercial code ANSYS in order to evaluate the design safety.

  • PDF

A study on structural stability of Backgrinding equipment using finite element analysis (유한요소해석을 이용한 백그라인딩 장비의 구조안정성 연구)

  • Wi, Eun-Chan;Ko, Min-Sung;Kim, Hyun-Jeong;Kim, Sung-Chul;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.58-64
    • /
    • 2020
  • Lately, the development of the semiconductor industry has led to the miniaturization of electronic devices. Therefore, semiconductor wafers of very thin thickness that can be used in Multi-Chip Packages are required. There is active research on the backgrinding process to reduce the thickness of the wafer. The backgrinding process polishes the backside of the wafer, reducing the thickness of the wafer to tens of ㎛. The equipment that performs the backgrinding process requires ultra-precision. Currently, there is no full auto backgrinding equipment in Korea. Therefore, in this study, ultra-precision backgrinding equipment was designed. In addition, finite element analysis was conducted to verify the equipment design validity. The deflection and structural stability of the backgrinding equipment were analyzed using finite element analysis.

Japanese mold technology revolutionizing the mold industry (금형 산업을 변혁하는 일본의 금형 기술)

  • Jeong-Won Lee;Yong-Dae Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • The mold industry in Japan, an advanced country in the mold industry, is also at a point of great change. The main causes are the Ukraine crisis and the collapse of the global supply chain (parts supply chain) caused by COVID-19. In addition, the prices of overseas products are rising sharply due to rapid exchange rate fluctuations (decrease in the value of the yen). Until now, Japan's monotsukuri industry has been actively pursuing overseas expansion, riding the trend of globalization. However, the trend began to rapidly reverse, and now the monotsukuri industry that had expanded overseas is showing a tendency to return to Japan. Another factor of change is the change in the automobile industry, which is the most demanded product in the mold industry. As the automobile industry evolves from gasoline cars to electric cars, the number of parts that make up a car will drastically decrease. This trend is expected to increase the demand for small-scale production of a variety of products in the mold industry, and furthermore, it is expected that short delivery times will be required in parts development. As in Korea, the production population working in the mold industry is rapidly decreasing in Japan as well. Even if you add up the total population working in manufacturing in Japan, it only accounts for about 15%. Even in Japan, it is judged that it will be difficult to sustain the monotsukuri industry with this small production population. Therefore, since improvement in production efficiency cannot be expected with the same manual dexterity as before, the mold industry is also demanding the development of mold technology at a different level than before to increase productivity. In this paper, I would like to introduce new Japanese mold technology collected through attending the Intermold exhibition. This is an example of applying a dedicated pin (Gastos) to a mold to prevent an increase in internal pressure during plastic injection molding, and a deep drawing press molding technology with an inherent hydraulic function.

The Use of Finite Element Method to Predict the Hot Shear-Welding Process of Two Aluminum Plates

  • Shang, Li-Dong;Lee, Kyeng-Kook;Jin, In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.426-430
    • /
    • 2008
  • Hot shear-welding is a process of bonding two plates together by using shearing stress in a controlled manner. This study dealt with the hot shear-welding process of two aluminum plates. These two plates were piles up in the shear-welding mold. Due to the shearing stress, these two plates were cut off longitudinally, and meantime they were welded together. During this process the control of the surplus material flow is very important, and it can be realized by designing the overlapping length and the shape of the cavity. The commercial software Deform-3D was employed to predict the effect of these two factors. The overlapping length and the shape of the cavity that presents the optimum design was then developed to get a good shear-welding process.

  • PDF