• Title/Summary/Keyword: Die & Mold Design Engineering

Search Result 414, Processing Time 0.024 seconds

A study on the process optimization of microcellular foaming injection molded air-conditioner drain pen (화학적 초미세 발포 사출성형을 이용한 에어컨 드레인 펜의 공정 최적화에 대한 연구)

  • Kim, Joo-Kwon;Kwak, Jae-Seob;Kim, Jun-Min;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, we applied microcellular foaming injection molding process to improve the performance of system air-conditioner drain fan which had been produced by injection molding process and studied the optimization of process conditions through 6-sigma process and response surface method (RSM) to reduce weight and deformation of products. Additive type, melt temperature, mold temperature, and injection screw shape were selected as the factor affecting the weight and deformation of the products by carrying out analysis of trivial many through ANOVA and design of experiment (DOE) method. Among the effect factor, we set the addictive type to Long G/F and screw shape to foaming screw which had the highest level of weight reduction and deformation reduction. The amount of foaming agent gas was set at 60 ml, which was the limit beyond which the weight of product did not decrease any more. For melt temperature and mold temperature, we studied the conditions where both weight and deformation were minimized using the RSM. As a result, we set the melt temperature to $250^{\circ}C$, fixed mold temperature to $20^{\circ}C$, and moving mold temperature to $40^{\circ}C$. The improvement effect was analyzed by appling the selected optimal conditions to the production process using the microcellular foaming injection molding. The results showed that the mean weight of product was measured to be 1,420g which was 19% lower than that measured in the current process. The standard deviations of the weights were found to be similar to those in the current process and it showed a low dispersion. The mean deformation was measured to be 0.9237mm, which represented a 57% reduction compared to the mean deformation in the current process, and the standard deviation decreased from 0.3298mm to 0.1398mm. Moreover, we analyzed the process capability for deformation, and the results showed that the short-term process capability increased from 2.73 to 6.60 which was even higher than targeted level of 6.0.

Design of Cold Forging Process of Micro Screw for Mobile Devices (모바일 기기용 초소형 나사의 냉간 단조 공정 설계)

  • Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3692-3697
    • /
    • 2015
  • A screw is a type of fastener characterized by a helical ridge known as thread. The demands for screws with the miniaturization and weight reduction are increasing for the trend of small size of mobile devices. The successful designs of mold and process are very important to obtain screws with good mechanical properties and high precision. In this study, the design of cold forging process of micro screw was carried out by using finite element method. In particular, in order to investigate the effects of die geometries and friction, design of experiment method was adopted and it was revealed that the friction was the dominant factor of folding defects. From these results, the design of die was modified and experiments were carried out with the modified die. From the experimental results, it was found that the folding defects disappeared.

A study on the minimization of deformation by milling of plate-shaped parts (판형 부품의 밀링 가공에 의한 변형 최소화에 대한 연구)

  • Lee, Min-Gu;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2021
  • Plate-shaped works are one of the materials that can be applied to the entire industry due to their various shapes and sizes. Plate-shaped parts workpieces are thin and wide, and when processing is completed, they are often bent or deformed in various directions, making it difficult to produce normal products. In particular, this study intends to study the processing deformation and distortion of plate-shaped parts fastened to the jig during milling processing. In this study, a method for preventing deformation occurring in plate-shaped parts was derived through jig element change and CAE analysis, and this was applied to actual processing to produce products with stable dimensions. Through a finite element analysis experiment, it was found that installing two supports on the back of the plate-shaped part results in minimal deformation and the optimal distance between the two supports is 150 mm. Through this experiment, when processing a thin plate product, a support was installed in a direction opposite to the cutting force applied to the thin plate to prevent deformation of the product, thereby improving defects.

Machine Learning Model for Reduction Deformation of Plastic Motor Housing for Automobiles

  • Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2024
  • The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

A Study on the impact on the quality of hemming the number of hemming process (중소형 회로 차단기에 적용 가능한 한류 메커니즘의 개발)

  • Lee, Je-Duk;Park, Jong-Sik;Im, Jae-Guk;Park, Dong-Hee;Park, Min-Ho;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • Electrical equipment in factories, buildings, etc. with the development of the industry has become a large capacity. By the development, electric load also become diversified and there is also highly functional requirements being electrical equipment. Particularly in the small and medium-sized circuit breakers, tend to preferentially consider the economy stands out and improvements in safety, ease of mounting and connection through the modularity of the basic dimensions compact and cost to block expansion of the scope of the development of capacity, etc. The product having a competitive has been strongly required. In order to implement the circuit breakers of breaking capacity and compact at the same time taking into account the economic development of this technology applied to the current-limiting mechanism is essential budget or the current limiting mechanism is currently available mechanisms applicable to small and medium-sized frame (frame) can not do it. In this paper, at the same time satisfying the economic efficiency, by minimizing the load force of the moving contactor (moving contactor) to be applied to small and medium frame other hand to secure the economical efficiency without using high speed contact parting acceleration of the moving contactor conventional current-limiting mechanism, and to develop a current-limiting mechanism that can be satisfied with the same or higher performance to meet the needs of the market.

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

A Study on the Inner Temperature Behaviors in the Casting Process for the Development of the Automatic Parts (자동차 부품 소재 개발에 따른 캐스팅 과정의 부품 내부온도 거동에 관한 연구)

  • Cha Young-Hoon;Sung Back-Sub;Jang Hoon;Kim Mi-Ai;Kim Jung-Dae;Kim Sun-Jun;Kim Duck-Joong;Lee Youn-Sin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.279-284
    • /
    • 2005
  • The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. In this thesis, the computer simulation analyzed the flow of molten metal. The quantitative analyses which proposed the effective mold design was executed Flow patterns of 0.15-0.16m/s molten metal in 15 mm thin plate casting were investigated in order to optimize die-casting process. As increasing ingate velocity in thin plate casting, cold shot was decreased. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

A preliminary study on the evaluation method of online design education (비대면 디자인 교육 평가 체계 구축에 관한 기초 연구)

  • Park, Seo-Yeon;Pan, Young-Hwan
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • The purpose of this study is to develop an evaluation method for online design education. Online education has established itself as the primary form in the educational field, however, there are unsatisfactory response from instructors and students due to rapid conversion of online education. Due to the transition of educational method, online class contents have become optimized and online educational experiences became accumulated. However, clear education criteria is essential. This study states importance of two parts: establishing an evaluation system based on design thinking for online design education and finding appropriate online platforms for interaction between instructors and students. The research results provide implications for ensuring the efficiency of design education and are expected to contribute significantly to the future education field.

Calculation of Average Thickness of film in Thermoforming by Simulation (시뮬레이션을 통한 열성형에서의 필름 평균두께 계산)

  • Soon-Young Lee;Sun-Kyoung Kim
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.52-56
    • /
    • 2023
  • In this study, numerical simulation of the thermoforming process of PVC film material was performed using PAMForm. For this purpose, tensile tests were performed at various temperatures and the coefficients of the G'Sell model were obtained and used. As a result of the analysis, it was confirmed that the thickness decreased by up to 55% in the section where the film was in contact with the vertical direction and was greatly stretched. If the thickness is excessively thin, the part may become structurally weak, so in the thermoforming process, numerical simulation of the thickness in advance is expected to be helpful in successfully performing the process.