• Title/Summary/Keyword: Die & Mold Design Engineering

Search Result 414, Processing Time 0.024 seconds

A study on reduction of clamping force for plastic back cover of large TV (대형 TV의 플라스틱 후면 커버 성형시의 형체력 절감 방안 연구)

  • Song, Jae-Choon;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.36-41
    • /
    • 2019
  • A large plastic molding requires an injection molding with a large clamping force. However, it could not be prepared in the manufacturing at any time. In order to solve the problem, the injection molding analysis study was conducted on the back cover of 55 inch LED TV. The study compared the case of applying the existing flow system such as hot runner, the improvement of the hot runner lay-out and the precise control of the gate operation time, From the results of using the improved flow system, it was found that the welding and the clamping force were considerably improved as compared with before the improvement. In particular, the clamping force was reduced by 50% compared with before the improvement.

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.

A study on simultaneous injection molding and two-color coating for car gas cap cover (자동차 주유구 커버에 대한 사출성형과 2색 코팅 동시 구현에 관한 연구)

  • Bae, Hyung-Sup;Park, Dong-Hyun;Kim, Boo-Kon;Seo, Chang-Ho;Heo, Won-Geun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2021
  • Mold design for in-mold coating was carried out to achieve simultaneous injection molding and two-color coating for car gas cap cover. The developed mold includes one core and three cavities which are composed of a substrate cavity and two coating cavities. To provide a sealing edge for complete seal during the second coating, the first coated material was used at the boundary between the first coating and the second one, and injection molded substrate was used at the parting line. The materials used were PC/ABS for substrate and 2-component Polyurea for coating. Through experiments, it was found that the suggested sealing edges were effective for complete seal during the second coating. In cavity pressure traces, there were three peaks caused by mold closing, coating-material injection and cleaning-piston advancement inside the mixing head. The cavity pressure increased with decreasing coating thickness.

Composition-property Relationships of Enamel Glass for Low Carbon Steel

  • Kang, Eun-Tae;Kim, Jong-Po;Cho, Yong-Hyun;Park, Seon-Mi
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.186-194
    • /
    • 2013
  • The relationship between composition and properties of enamel glass was investigated by introducing a mixture design. The enamel glass was manufactured by mixing various components under the following constraints: $45{\leq}SiO_2{\leq}55$, $10{\leq}B_2O_3{\leq}18$, $6{\leq}Na_2O{\leq}15$, $1{\leq}Li_2O{\leq}6$, $5{\leq}K_2O{\leq}10$, $0{\leq}TiO_2{\leq}8$, $0{\leq}ZrO_2{\leq}8$, 13.3MO (mol %). A mathematical model for the calculation of some properties of enamel glasses as a function of their composition was developed by the experimental statistical method. The results showed that the proposed model with the experimental measurement were in good agreement and the mixture experimental design was an effective method for optimizing the composition of the enamel glass with respect to its properties.

A study on the contactless generator and recharge system for a bicyle (비접촉식 자전거 발전기 및 충전 시스템 개발에 관한 연구)

  • Park, Wang-Geun;Won, Si-Tae
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, the non-contact type bicycle generator system considering the recharge is developed to use the eco-friendly energy source when the bicycle is operating. The following three main factors are considered in this study. One of factors is that the intensity of the rotating magnet is in the range of 2,700~4,300 [Gause]. The next factor is that the separation distance of rotating magnet and bicycle rim is in the range of 1.5-3.0 mm. The last factor is that the pedaling speed is in the range of 55 RPM [Wheel speed 5.6Km]~150 RPM [Wheel speed 15.25Km] consirering with the 5 staged gear transmission. The obtained results are as followed. (1) The generator output voltage gradually increases from 3V to 10V with the pedaling speed increases, at the separation distance is less than 2.5 mm and the operating voltage of the LED lamp is generated at a pedaling speed of 60 RPM or more. (2) The output current of the generator increases from 20mA to 40mA with the pedaling speed increases, at a separation distance is less than 2.0 mm and the operating current of the LED lamp is generated at a pedaling speed of 60 RPM or more. (3) When the separation distance was 3.0 mm, the output voltage and current are significantly lower than those of the bicycle LED lamp is generated. (4) The charging time is expected to be 12.24 ~ 17.65 hours when the magnitude of the magnet is 3,400[Gauss] at a pedaling speed of 55 RPM or more. (5) As a result of this study, it is thought that the non-contact type bicycle generator system considering the recharge can replace the conventional friction power generation system.

Compensation Design to Reduce Springback in Sheet Metal Forming of 1.2GPa Ultra High Strength Steel (1.2GPa급 강판 판재 성형에서 스프링백 감소를 위한 금형 보상 설계)

  • Kwon, S.H.;Lee, H.S.;Lee, Y.S.;Kim, S.W.;Jung, C.Y.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.301-305
    • /
    • 2016
  • The manual modification of stamping die has widely been used in order to reduce springback after sheet metal forming. When UHSS (Ultra High Strength Steel) is used in sheet metal forming, the die design considering springback compensation is more difficult because higher strength sheet has more springback. In this study, the optimization method was used in order to design die geometry considering springback compensation after forming of 1.2GPa UHSS. Die geometries were defined as design variables and the springback distance from the die surface was conducted as object function in optimization process. The optimized die geometry considering springback compensation was performed using finite element and optimization analysis. The simulation results such as thickness distribution and springback amount were compared with measured data using 3D optical measurement system (GOM ARGUS, ATOS). And the prediction of springback amount showed a good agreement within test results.

A study on the detection of misalignment between piercing punch and die using a bolt-type piezo sensor (볼트형 피에조 센서를 활용한 피어싱 펀치의 얼라인먼트 불량 검출에 관한 연구)

  • Jeon, Yong-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.51-56
    • /
    • 2021
  • Piercing is the process of shearing a circular hole in sheet metal, whose high shear force makes it difficult to secure the durability of tools. In addition, uneven clearance between tools due to poor alignment of the piercing punch causes accelerated die wear and breakage of the tool. This study reviewed the feasibility of in-situ determining alignment failure during the piercing process by analyzing the signal deviation of a bolt-type piezo sensor installed inside the tool whose alignment level was controlled. Finite element analysis was performed to select the optimal sensor location on the piercing tool for sensitive detection of process signals. A well-aligned piercing process results in uniform deformation in the circumferential direction, and shearing is completed at a stroke similar to the sheet thickness. Afterward, a sharp decrease in shear load is observed. The misaligned piecing punch leads to a gradual decrease in the load after the maximum shear load. This gradual decrease is due to the progressive shear deformation that proceeds in the circumferential direction after the initial crack occurs at the narrow clearance site. Therefore, analyzing the stroke at which the maximum shear load occurs and the load reduction rate after that could detect the misalignment of the piercing punch in real-time.

A study about design of main parts and injection molds for atomization of cosmetic spray using finite element method (수치해석을 이용한 코그메틱용 스프레이 미립화를 위한 부품설계 및 금형 설계에 과한 연구)

  • Seo, Hyoung-Jin;Son, Chang-Woo;Jang, Young-Ju;Yang, Woo;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.25-29
    • /
    • 2015
  • This paper presented characterization of spray velocity and angle of spray nozzle systems for cosmetic products. Diameter and length of nozzle orifice were chosen as shape factors of the spray system. Spray orifice of the spray pattern is a factor influencing the quality of the product. Fluid analysis was conducted by using "Fluent" to obtain spray angle and velocity. RSM (Response Surface Method) was used to approximate the relationship between these 2 factors and spray characteristics. To evaluate the proposed method, experimental work with existing was conducted and good agreement between simulation and experimental results.

  • PDF

Hinge Design and Injection Molding Simulation of Cosmetic Cushion Fact Container Using Eco-Friendly Materials (친환경 소재를 이용한 화장품 쿠션 팩트 용기의 힌지 설계와 사출 성형 시뮬레이션)

  • Jung, Sung-Taek;Kim, Hyun-Jeong;Wi, Eun-Chan;Kim, Min-Su;Lee, Joong-Bae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.35-40
    • /
    • 2019
  • As the consumer market in the cosmetic, vehicle manufacturing and aerospace industries grows, the demand for manufacturing industries using on injection mold technology. Also, such manufacturing technology of metal machining is expensive, and the shape is limited. Cosmetic cushion fact products are divided into outer relevant to the exterior of the product and inner containers containing the actual contents. In the case of the inner container, it needs to be combined with the upper and lower cases. As environmental regulations are strengthened internationally, the use of a large number of component parts can result in significant losses in recycling and economics. Therefore, this study aims to perform injection molding analysis through injection molding simulation to develop a cushion fact container that can be recycled through the unification of products and materials using polypropylene to cope with environmental regulations. In the case of injection molding conditions, Injection Time(sec): 4.5, Cooling Time(sec): 13, Resin Temperature($^{\circ}C$): 240, and Pressure(MPa): 30 were determined. The results of injection molding simulation according to the two design methods were compared with the sync mark which shows the problem of filling and injection molding.

Injection molding analysis of smart phone camera VCM housing (스마트폰 카메라용 VCM housing 사출 성형 해석)

  • Yoon, Seon Jhin;Cho, Yong Moo
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2017
  • The injection molding analysis of VCM (Voice Coil Motor) housing for smart phone cameras were performed. We conducted the analysis in terms of injection molding pressure, the formation of weld lines, flow marks, and flow patterns. The goal of the analysis was targeted for the prediction of the optimal gate locations. Because the quality of VCM housing is strongly dependent on the precise control of the camera lens by its nature, we focused on the lens guiding lanes in the VCM housing. We first calculated the maximum injection molding pressure in terms of the filled volumes. The injection molding pressure were calculated within 146MPa at about 90% volume filled. We also investigated the possibility of the occurrence of design-related defects such flow marks, weld lines. Filling patterns regarding the design of the gate locations were delineated to find the weld lines. Throughout the simulations, the final deformations of the lens guiding lanes for the VCM housing were calculated. The deformations distribute ranging from $0.5{\mu}m$ to $2.50{\mu}m$, which were used to find the optimal design of the gates.