• Title/Summary/Keyword: Dicalcium phosphate dihydrate

Search Result 15, Processing Time 0.026 seconds

Effects of 3.5% Hydrogen Peroxide Containing Dicalcium Phosphate Dihydrate on the Tooth Enamel Surface (Dicalcium Phosphate Dihydrate를 함유한 3.5% 과산화수소가 치아표면에 미치는 영향)

  • Shim, Youn-Soo
    • Journal of dental hygiene science
    • /
    • v.12 no.4
    • /
    • pp.320-328
    • /
    • 2012
  • The purpose of this study was to evaluate the tooth whitening and properties of an enamel surface after treatments with tooth bleaching agents that contained dicalcium phosphate dihydrate (DCPD) and hydrogen peroxide (HP). Thirty specimens were obtained from fifteen premolar and were randomly divided into three groups (n=10): 1, 3.5% HP + 0 g DCPD; 2, 3.5% HP + 0.1 g DCPD; 3. 3.5% HP + 1 g DCPD. All groups were bleached 8 hours per day for 14 days. With increasing DCPD concentration, the pH values in the agents increased, making it less acidic. However, there was no statistically significant difference (p>.05). As the concentration of DCPD was increased, the concentration of Ca and P was also increased. In all groups, after the tooth whitening, the tooth color was found to have a value of $L^*$ (p<.05). All groups showed significantly decreased enamel microhardness compared to their baseline (p<.05). The percentage microhardness loss (PML) of the group A1 and A2 were significantly lower than that of group A3. The obvious variation of morphology was observed on enamel surfaces in group A1. Following an analysis of the constituents of enamel surface after bleaching, as DCPD content was increased, the amount of Ca and P was increased. In this study, the experimental results suggest that DCPD/HP agent less demineralization changes such as the erosion morphology and hardness loss without compromising whitening efficiency.

Synthesis and Physico-Chemical Properties of Dicalcium Phosphate Dihydrate for Dental Abrasive (치아 연마용 인산일수소칼슘의 합성 및 물리화학적 성질)

  • 서성수;황성주;이기명;이계주
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.66-75
    • /
    • 1993
  • Dental abrasive, dicalcium phosphate dehydrate (DCPD) was prepared and the several important factors affecting on the quality of toothpaste were investigated by means of set test, glycerine absorption, Coulter counter test, color difference, BET adsorption, mercury porosimetery, and rheogram comparing with two foreign DCPDs, MFO4 and Dentphos K. Sample DCPD was prepared by reaction between 85% H$_{3}$PO$_{4}$ and 15% milk of lime at $39^{\circ}C$ (pH6.5), and stabilized with TSPP and TMP. The physicochemical properties of Sample DCPD were obtained as follows: whiteness (98.99), average particle size (15.5 $\mu\textrm{m}$), pH (7.9), remainder particle weight (0.49w/w%), glycerine absorption value (64 ml), and set test (passed). N$_{2}$ adsorption curves (BET) of three kinds of DCPD showed non-porous type III isotherm. BET adsorption parameters of sample DCPD showed that surface area was 24.9 m$^{2}$/g, total pore volume 0.09 cm$^{3}$/g and average pore radius 72.0 $\AA$. The rheogram of the toothpaste containing each DCPD showed bulged plastic flow with yield vlaue and thixotropic behavior. These results meet standard requirements as abrasive standard, and suggested that synthesized sample DCPD could be used a dental abrasive such as a high quality grade in practice as foreign DCPDs.

  • PDF

Setting and Hydroxyapatite Formation of Bioactive Glass Bone Cement (생체활성 유리 골 시멘트의 응결 및 수산화 아파타이트 형성)

  • Lim, Hyoung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.770-776
    • /
    • 2005
  • Hardening and hydroxyapatite(HAp) formation behavior of the bioactive cements in the system of $CaO-SiO_{2}-P_{2}O_{5}$ glasses and the corresponding glass-ceramics were studied. DCPD (Dicalcium Phosphate Dihydrate: $CaHPO_4{\cdot}2H_2O$) and DCPA (Dicalcium Phosphate Anhydrous: $CaHPO_4$) were developed when the prepared glass and glass-ceramic powders were mixed with three different solutions. The DCPD and DCPA transformed to HAp when the cement was soaked in Simulated Body Fluid (SBF), and this HAp formation strongly depended on the releasing capacity of $Ca^{2+}$ ions from the cements. The glass-ceramic containing apatite showed fast setting, but no HAp formation was observed because no $Ca^{2+}$ ions were released from this glass-ceramics. The compressive strength of the cements increased with reaction time in SBF until all DCPD and DCPA transformed to HAp.

Reinforcement of Calcium Phosphate-Calcium Sulfate Injectable Bone Substitute Using Citric Acid and Hydroxypropyl-Methyl-Cellulose

  • Thai, Van Viet;Kim, Min-Sung;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.45.1-45.1
    • /
    • 2009
  • In this study, we investigated a calcium phosphate-calcium sulfate injectable bone substitute (IBS) with organic reinforcement of chitosan, citric acid and hydroxypropyl-methyl-cellulose (HPMC). The powder component of IBS consisted of tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dihydrate (CSD). The liquid component was a solution of citric acid and chitosan. The effect of HPMC in terms of setting time, compressive strength and apatite forming ability on this IBS was investigated. The mass content of HPMC in liquid phase was varied in array of 0%, 2%, 3% and 4%. The setting times obtained between 20 and 45 minutes. Compressive strength was achieved over 20 MPa after incubation at 370C and in 100% humidity for 28 days. Porosities were evaluated in relation with compressive strength. Elastic moduli of the 28 days after-incubation IBS were obtained around 4GPa

  • PDF

Effect of 35% Hydrogen Peroxide with Dicalcium Phosphate Dihydrate on the Tooth Whitening and Microhardness (35% 과산화수소에 제2인산칼슘를 함유한 치아미백제가 치아의 색과 경도에 미치는 영향)

  • Jeoung, Mi-Ae;Oh, Hye-Seung;Shim, Youn-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.235-242
    • /
    • 2010
  • The purpose of this study was to evaluate tooth whitening and microhardness after treatments with tooth bleaching agents containing dicalcium phosphate dihydrate (DCPD) and 35% hydrogen peroxide (HP) which were used in-office bleaching. Thirty enamel specimens were obtained from human premolars and randomly divided into 3 groups(n=10). Tooth bleaching agents were prepared with DCPD (0 g for controls, 0.1 g and 1 g for experimental groups) and HP solution (35% HP). All groups were applied to enamel surfaces for 60 min for 1 day. The pH of each tooth bleaching agent was measured. Tooth color, microhardness of enamel surfaces were also measured. The tooth bleaching agents containing DCPD showed a significant increase in pH compared to the ones without DCPD(p<0.05). Paired t-tests showed significant difference in color values of enamel before and after bleaching in all the groups(p<0.05). As a result, changes in color, containing DCPD group does not contain a statistically significant difference between groups was observed.(p>0.05). In all groups, tooth hardness after bleaching showed a significant decrease in microhardness (p<0.05). However, the DCPD concentration increased in the bleaching, microhardness values slightly decreased. Based on the above results, tooth bleaching agents containing DCPD and 35%HP were equally effective. Due to increases in pH and effective reduction of tooth surface decalcification, the surface characteristics are exposed to a reduced degree of negative effects, resulting in fewer constituent enamel alterations. Thus, commercial availability of the constituents of tooth whitening materials can be achieved.

DCPD Formation and Conversion to HAp in Glass and Glass-ceramic Bone Cement (유리 및 결정화 유리 골 시멘트에서 DCPD의 형성 및 수산화 아파타이트로의 전환)

  • Lim, Hyung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.26-33
    • /
    • 2011
  • The glass in the system of CaO-$SiO_2-P_2O_5$ and the corresponding glass-ceramics are prepared for bone cements and the behaviors of the hardening and hydroxyapatite formation were studied for the glass and glass-ceramic powders. The glass crystallized into apatite, $\alpha$-wollastonite and $\beta$-wollastonite depending on the glass composition when they were heat-treated at $950^{\circ}C$ for 4 h. A DCPD (dicalcium phosphate dihydrate : $CaHPO_4{\cdot}2H_2O$) was developed when the prepared glass and glass-ceramic powders were mixed with 3M-$H_3PO_4$ solution. The DCPD (Ca/P=1.0) transformed to HAp (Ca/P=1.67) when the bone cement was soaked in simulated body fluid (SBF), and this HAp formation strongly depended on the releasing capacity of $Ca^{2+}$ ions from the glass and glass-ceramic cements. The glass-ceramic bone cement containing $\alpha$-wollastonite crystals showed faster transformation of DCPD to HAp than other glass-ceramics containing $\alpha$- and $\beta$-wollastonite crystals. No hydroxyapatite was observed when the glass-ceramic bone cement containing apatite crystals (36P6C) was soaked in SBF even for 1 month, because no $Ca^{2+}$ ion can be released from the stable apatite crystals.

A Study on the Properties of Dicalcium Phosphate Dihydrate According to the Manufacturing Condition (제이인산(第二燐酸)칼슘의 제조조건(製造條件)에 따른 성상(性狀) 연구(硏究))

  • Lah, Woon-Lyong;An, Kyung-Ran;Han, Kwan-Sup;Lee, Gye-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 1976
  • Dicalcium phosphate dihydrate (DCPD) is the most widely-used dentifrice abrasive in non-therapeutic tooth-paste requiring, low abrasive level, high stability and excellent compatibility with other formulation ingredients. One of the difficulties encountered in the use of this material in tooth-paste is that unless storage of the product is maintained at a relative low temperature there is a distinct tendency to lose water of crystallization. Another difficulty which has been encountered is that there is a tendency for the product to become lumpy. Various means have been proposed for increasing the stability and overcoming the lumping tendency, most of which means comprise the addition of stabilizing agent. But there is not any report about the relationships between the mechanism of dehydration, physical properties, structure and manufacturing condition. In this experiment, DCPD were manufactured by methods of Moss' patent, its two varied and J.P.VIII, these were studied by means of stability test, IR spectra, and DTA. According to the manufacturing conditions, DCPD has different physical properties and structures, i. e., monoclinic system of low drying temperature, triclinic system of high drying temperature. Dehydration of DCPD may be supposed one step debydration at about $100^{\circ}$ and it finaly converts to ${\gamma}-pyrophosphate$ at about $465^{\circ}$ and if the drying temperature is high it becomes DCP anhydrous. DCPD made by Moss' patent is thought of the best polishing agent of tooth-paste.

  • PDF

Rheological Properties of Calcium Phosphate Cement Mixed with 2 Kinds of Setting Solution (2종의 경화액과 혼합된 calcium phosphate cement의 유변학적 성질에 관한 연구)

  • Chang, Seok-Woo;Kwon, Ho-Beom;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • Calcium phosphate cement (CPC) has been used as bone substitute successfully due to good biocompatibility and osteoconductivity. One of the important mechanical characteristics of CPC is flowablility, which can be evaluated by measuring rheological parameters. However, there have been few studies that measured rheological properties of CPC. The purpose of this study was to evaluate the rheological properties of CPC paste mixed with 2 kinds of setting solutions, 2% hydroxyprophyl methylcellulose (HPMC) and 35% polyacrylic acid (PAA). The CPC used was dicalcium phosphate dihydrate (DCPD). Rheological properties of CPC paste were measured using rheometer. The statistical analysis was carried out with Mann-whitney test with Bonferronis collection. CPC with both setting solutions showed shear thinning behavior. CPC with 2% HPMC showed signigicantly higher complex viscosity than CPC with 35% PAA(p<0.05).

THE EFFECTS OF pH, TEMPERATURE AND TIME ON THE SYNTHESIS OF HYDROXYAPATITE (pH, 온도 및 시간이 수산화인회석의 합성에 미치는 영향)

  • Lee, Hee-Joo;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.27-44
    • /
    • 1994
  • The purpose of this study was to determine the effects of pH, temperature and time on the synthesis of hydroxyapatite(HAP) by spontaneous precipitation under relatively physiologic condition. Specimens were obtained from aqueous system with various pH, temperature and experimental time. Chemical composition, crystallographic structure and crystallinity of the synthetic HAP were evaluated by Infrared spectroscopy and powdered X-ray diffraction method. The following results were obtained. 1. No precipitate was obtained under pH 5.5. 2. All the specimens were concluded as HAP except one that was obtained under the condition of pH 6.5, $25^{\circ}C$ and 1 day. It was concluded as dicalcium phosphate dihydrate(DCPD). 3. The crystallinity of HAP was enhanced by increases in pH, temperature and time of the preparation. But, the crystallinity of the synthetic HAP was lower than that of the mineral HAP. 4. Intermediates such as DCPD and octacalcium phosphate were formed on the process of the synthesis of HAP.

  • PDF

Wet preparation of calcium phosphates from aqueous solutions

  • Lee, Byeong Woo;Hong, Il Gok
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.655-659
    • /
    • 2019
  • Calcium phosphates such as HA (hydroxyapatite), β-TCP (tricalcium phosphate) and biphasic HA/β-TCP, were synthesized by wet chemical precipitation in aqueous solution combined with ball milling process. Nanosize powders of the calcium phosphates were synthesized using Ca(OH)2 and H3PO4. The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67), ball milling process and post heat-treatment on the phase evolution behavior of the powders were investigated. The phase of resulting powder was controllable by adjusting the initial Ca/P ratio. HA was the only phase for as-prepared powders in both cases of Ca/P ratios of 1.50 and 1.67. The single HA phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat-treatment range. Pure β-TCP and biphasic calcium phosphate (HA/β-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat-treated above 700 ℃. The β-TCP phase has appeared on the pre-existing DCPD (dicalcium phosphate dihydrate) and/or HA phase. Dense ceramics having translucency were obtained at a considerably lower sintering temperature. The modified process offered a fast, convenient and economical route for the synthesis of calcium phosphates.