• 제목/요약/키워드: Diatomic gases

검색결과 8건 처리시간 0.019초

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

  • Lee, Song Hi;Kim, Jahun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3527-3531
    • /
    • 2014
  • In this paper, we report thermodynamic and transport properties (diffusion coefficient, viscosity, and thermal conductivity) of diatomic gases ($H_2$, $N_2$, $O_2$, and $Cl_2$) at 273.15 K and 1.00 atm by performing molecular dynamics simulations using Lennard-Jones intermolecular potential and modified Green-Kubo formulas. The results of self-diffusion coefficients of diatomic gases obtained from velocity auto-correlation functions by Green-Kubo relation are in good agreement with those obtained from mean square displacements by Einstein relation. While the results for viscosities of diatomic gases obtained from stress auto-correlation functions underestimate the experimental results, those for thermal conductivities obtained from heat flux auto-correlation functions overestimate the experimental data except $H_2$.

이원자 기체 일반유체역학 모델을 이용한 극초음속 희박 유동장 해석 (Numerical Analysis of Rarefied Hypersonic Flows Using Generalized Hydrodynamic Models for Diatomic Gases)

  • 명노신
    • 한국항공우주학회지
    • /
    • 제30권5호
    • /
    • pp.32-40
    • /
    • 2002
  • 희박상태나 극소장치에 관련된 기체운동을 해석하는 문제가 최근 중요한 연구주제로 부각되고 있다. 잘 알려진 DSMC와 더불어 모우멘트 기법, Chapman-Enskog 기법으로 분류되는 고차 비평형 유동 해석모델들이 이 문제에 적용되어 왔다. 본 연구에서는 Eu의 일반유체역학을 근간으로 이원자 기체에 관한 고차 해석모델을 개발하고자 한다. 회전 비평형 효과는 기체의 용적 점성계수에 관한 초과 수직응력을 고려하여 감안하였다. 개발된 계산모델을 일차원 충격파 내부구조와 단순 형상 외부의 희박 극초음속 유동장 해석에 적용하였다. 충격파 내부구조 및 전단유동 해석을 통해 회전 비평형에 의한 용적 점성계수 효과가 중요함을 확인하였다. 충격파 내부구조에 관한 이론적 예측이 실험과 잘 일치함도 확인하였다.

이원자 기체 유동 해석을 위한 일반유체역학 계산모델 개발 (Generalized Hydrodynamic Computational Models for Diatomic Gas Flows)

  • 명노신;조수용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.111-115
    • /
    • 2001
  • The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, a computational model for diatomic gases is proposed. The preliminary result indicates that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. The general properties of the constitutive equations are obtained through a simple mathematical analysis. With an iterative computational algorithm of the constitutive equations, numerical solutions for the multi-dimensional problem can be obtained.

  • PDF

3차원 차분격자볼츠만 모델에의 내부자유도 적용 및 유동소음 모사 (Application of the Internal Degree of Freedom to 3D FDLB Model and Simulations of Aero-Acoustic)

  • 강호근;안수환;김정환
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.586-596
    • /
    • 2006
  • A 3-dimensional FDLB model with additional internal degree of freedom is applied for diatomic gases such as air, in which an additional distribution function is introduced. Direct simulations of aero-acoustic by using the applied model and scheme are presented. Speed of sound is correctly recovered. As typical examples, the Aeolian tone emitted by a circular column is successfully simulated even very low Mach number flow. Acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular column is captured. Full three-dimensional acoustic wave past a compact block like pentagon, furthermore, is also emitted in y direction as dipole like sound.

Energetics of adsorptions on fcc(111) and binary system; An application of the modified embedded atom method

  • Hy. Shin;J. Seo;Kim, J.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.188-188
    • /
    • 1999
  • The embedded atom method (EAM) of Daw and Baskes as a semiempirical method, has been successfully applied to the fcc or nearly filled d-band transition metals due to its computational feasibility and its methodological simplicity. Then Baskes modified the EAM (MEAM) to include directional bonding and applied it to metals, semiconductors, and diatomic gases, all of which have different types of bondings. Here, we present a detailed study of the energetics of adsorption on the fcc(111) surfaces and binary system within the framework of MEAM. In adsorption on fcc(111) surfaces, there are two energetically favored sites, so called, fcc site and hcp site, which may trigger stacking fault in the growth of films and might switch growth mode between 3D growth and layer by layer growth. We scrutinized the role of the hcp sites, which would offer dynamic growth pathways although the dynamics are not yet clear within the limited experimental resolution. Featuring these transient motions in the atomic level should contribute to the understanding the growth mechanisms on fcc(111) surface. And we also applied MEAM for initial stage energetics at the Cr coverage of sub- monolayer on W(110). We hope that recently observed extraordinary growth behavior at the Cr coverage of 0.7 monolayer, self- organized nano-scale lines, can be resolved in this MEAM binary system calculation.

  • PDF

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

On Implementation of the Finite Difference Lattice Boltzmann Method with Internal Degree of Freedom to Edgetone

  • Kang, Ho-Keun;Kim, Eun-Ra
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2032-2039
    • /
    • 2005
  • The lattice Boltzman method (LBM) and the finite difference-based lattice Boltzmann method (FDLBM) are quite recent approaches for simulating fluid flow, which have been proven as valid and efficient tools in a variety of complex flow problems. They are considered attractive alternatives to conventional finite-difference schemes because they recover the Navier-Stokes equations and are computationally more stable, and easily parallelizable. However, most models of the LBM or FDLBM are for incompressible fluids because of the simplicity of the structure of the model. Although some models for compressible thermal fluids have been introduced, these models are for monatomic gases, and suffer from the instability in calculations. A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic gas such as air is successfully simulated. In this research we present a 2-dimensional edge tone to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLBM in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guarantee the parabolic velocity profile of a jet at the outlet, and the edge is of an angle of $\alpha$=23$^{o}$. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations resulting from periodic oscillation of the jet around the edge.

Numerical Investigation of Flow-pattern and Flow-induced Noise for Two Staggered Circular Cylinders in Cross-flow by LBM

  • Kim, Jeong-Whan;Oh, Sae-Kyung;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.82-93
    • /
    • 2008
  • The flowfield behind two cylinders and flow-induced noise generated from the cylinders in various arrangement are numerically investigated based on the finite difference lattice Boltzmann model with 21 velocity bits. which is introduced a flexible specific heat ${\gamma}$ to simulate diatomic gases like air. In an isolated cylinder with two type of mesh. some flow parameters such as Strouhal number $S_t$ and acoustic pressure ${\Delta}p$ simulated from the solution are given and quantitatively compared with those provided the previous works. The effects of the center-to-center pitch ratio $L_{cc}/d=2.0$ in staggered circular cylinders as shown in Fig. 1 and angles of incidence ${\alpha}=30^{\circ}(T_{cc}/d=0.5)$, $45^{\circ}(T_{cc}/d =0.707)$ and $60^{\circ}\;(T_{cc}/d=0.866)$, respectively, are studied. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in staggered arrangement. With the results of drag $C_d$ and lift $C_l$ coefficients and vorticity contours. the mechanisms of the interference phenomenon and its interaction with the two-dimensional vortical structures are present in the flowfields under $Re\;{\le}\;200$. The results show that we successively capture very small pressure fluctuations, with the same frequency of vortex shedding, much smaller than the whole pressure fluctuation around pairs of circular cylinders. The upstream cylinder behaves like an isolated single cylinder, while the downstream one experiences wake-induced flutter. It is expected that, therefore, the relative position of the downstream cylinder has significant effects on the flow-induce noise, hydrodynamic force and vortex shedding characteristics of the cylinders.