• Title/Summary/Keyword: Diamond tools

Search Result 129, Processing Time 0.023 seconds

Case of Service Design Process for Medical Space Focused on Users (사용자중심 의료공간을 위한 서비스디자인 프로세스의 적용사례)

  • Noh, Meekyung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.4
    • /
    • pp.27-36
    • /
    • 2015
  • Purpose: Of late, the focus of service design is moving toward emphasizing customer satisfaction and taking users' experience more seriously. In addition to the change in perspective in service design, scholars in this area are paying more attention to service design methodology and process, as well as its theory and real-world case studies. In the case of medical space, there have been few studies in attempting to apply service design methods useful for deriving user-focused results. The author of this paper believes, however, case study-oriented approaches are more needed in this area rather than ones focusing on theoretical aspects. The author hopes thereby to expand the horizon to practical application of spatial design beyond service design methodology. Methods: In order to incorporate the strengths of service design methodology that can reflect a variety of user opinions, this study will introduce diverse tools in the framework of double diamond process. In addition, it will present field cases that successfully brought about best results in medical space design. It will end with summarizing the ideal process of medical space design which is reasonable and comprehensive. Results: Medical service encompasses preventive medicine as well as treatment of existing medical conditions. A study in establishing the platform of medical service design consists of a wide range of trend research, followed by the summary of two-matrix design classification based on results of the trend research. The draft of design process is divided into five stages composed of basic tools for establishing spatial flow lines created by matching service design tools with each stage of space design processes. In all this, most important elements to consider are communication and empathy. When service design is actually applied to space design, one can see that output has reflected the users' needs very well. The service design process for user-oriented medical space can thus be established by interactions on the final outcome and feedback on the results. Implications: One can see that the service design with the hospital at its center produces the result that encompasses the user's needs best. If the user-focused service design process for medical space can be extended to other space designs, the author believes that it would enhance the level of satisfaction for users and minimize trials and errors.

A Study on Strategic Positioning for Sustained Growth of Korean Major Corporations in Age of New Normal: with a Focus on the Case of Smart Phone Industry (뉴 노멀 시대에 주력 기업의 지속성장을 위한 전략적 위치에 대한 연구: 스마트폰 사례를 중심으로)

  • Lee, Jae Yeul;Kang, Min Soo;Jung, Yong Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.39-46
    • /
    • 2016
  • For several decades, Korean corporations have achieved remarkable success in the world market pursuing a quantitative growing strategy by benchmarking developed countries such as the United States, Japan and European Union. Recently, however, since not only the world economy enters into low growth age of New Normal, but the continuously increasing pressure of emerging countries like China and India, the global position of Korean corporations has ruffled. For these reason, the purpose of the study based on searching the strategy for Korean corporations to promote sustainable growth while gaining a competitive advantage in the world market. The study uses two analytical tools, Porter's Diamond Model and Productivity Frontier by analyzing the smart phone industry where Korea, the United States and China are competing desperately. The study is aimed at analyzing and comparing the global competitiveness among Apple as a leader, Samsung Electronics as a follower and Chinese corporations as newcomers in the smart phone industry. Based on the analysis and comparison, the study focuses on searching the strategic decision of Samsung Electronics, and suggests the future strategic positioning of major corporations in different industries in the world market.

Design Optimization of a Wing Structure under Multi Load Spectra using PSO algorithm (PSO 알고리즘을 이용한 다중 하중 스펙트럼 하에서의 항공기 날개 구조부재의 최적 설계 연구)

  • Park, Kook Jin;Park, Yong Jin;Cho, Jin Yeon;Park, Chan Yik;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.963-971
    • /
    • 2012
  • In this paper, development of optimal design tools for wing structure is described including multi load spectra condition and fatigue analysis. Two dimensional CFD result are used for calculating aerodynamic force. Design variables are composed of a number of rib and spar, positions, and thickness of each structural member. The mission profile for fatigue analysis is composed based upon the results of CFD analysis, the flight-by-flight spectra method, the excessive curves for gust loads. Minor's rule was used to deal with multi-load condition. Stress analysis and fatigue analysis are performed to calculate objective functions. Particle Swarm Optimization(PSO) algorithm was used to apply to problems which have dozens of design variables.

Characteristics of aspheric lens processing using ultra-precision moulds processing system (초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF

Microstructure and Mechanical Properties of Hardmaterials

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.6-6
    • /
    • 1994
  • Har dmaterials such as cemented carbides with or without coated layer, cermets, ceramics and diamond or c-BN high pressure sintered compact are used for cutting tools, wear -resistant parts, rock drilling bits and/or high pressure vessels. These hardmaterials contain not only hard phase, but also second consituent as the element for forming ductile phase and/or sintering aid, and the mechanical properties of each material depend on (1) the amount of the second constituent as well as (2) the grain size of the hard phase. The hardness of each material mainly depends on these two factors. The fracture strength, however, largely depends on other microstructur a1 factors as well as the above two factors. For all hardmaterials, the fracture strength is consider ably affected by (3) the size of microstructur a1 defect which acts as the fracture source. In cemented carbides, the following factors which are generated mainly due to the addition of the second constituent are also important; (4) the variation of the carbon content in the normal phase region free from V-phase and graphite phase, (5) the precipitation of $Co_3$ during heating at about $800^{\circ}C$,(6) the domain size of binder phase, and (7) the formation of ${\beta}$-free layer or Co-rich layer near the surface of sintered compacts. For cemented carbides coated with thin hard substance, the important factors are as follows; (8) the kind of coated substance, (9) the formation of ${\eta}$-phase layer at the interface between coated layer and substrate, (10) the type of residual stress (tension or compression) in the coated layer which depends on the kind of coating method (CVD or PVD), and (11) the properties of the substrate, and (12) the combination, coherency and periodicity of multi-layers. In the lecture, the details of these factors and their effect on the strength will be explained.

  • PDF

Machinable Ceramics Made by the Reaction Sintering of PSZ, Al2O3 and TiO2 (PSZ, Al2O3, TiO2를 반응소결하여 제조한 쾌삭(快削) 세라믹스)

  • Park, Jeong Hyun;Jung, Dong Sik;Lee, Won Jae;Kim, Il Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.581-585
    • /
    • 2012
  • Machinability is important in engineering applications, especially in the current micro-electronics industry. Most ceramic components have complex shapes and hence require machining generally with diamond tools, which incurs a high production cost. Recently, h-BN-containing machinable ceramics have been developed, but these materials are very expensive due to the high raw materials and production costs. Therefore, the development of low-cost machinable ceramics is necessary. In this study, inexpensive $Al_2TiO_5$ was studied as a replacement for h-BN. $Al_2O_3$, $TiO_2$ and partially stabilized $ZrO_2$(PSZ) powders were mixed with various mole ratios and were sintered at $1500^{\circ}C$ for 1 h. The density, hardness and strength were then measured. The phase analysis and microstructures were observed by XRD and SEM, respectively. The machinability of each specimen was tested by micro-hole machining. The results of this research showed that the produced composites could be used as low-cost machinable ceramics.

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

Tribological study on the thermal stability of thick ta-C coating at elevated temperatures

  • Lee, Woo Young;Ryu, Ho Jun;Jang, Young Jun;Kim, Gi Taek;Deng, Xingrui;Umehara, Noritsugu;Kim, Jong Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.144.2-144.2
    • /
    • 2016
  • Diamond-like carbon (DLC) coatings have been widely applied to the mechanical components, cutting tools due to properties of high hardness and wear resistance. Among them, hydrogenated amorphous carbon (a-C:H) coatings are well-known for their low friction properties, stable production of thin and thick film, they were reported to be easily worn away under high temperature. Non-hydrogenated tetrahedral amorphous carbon (ta-C) is an ideal for industrial applicability due to good thermal stability from high $sp^3$-bonding fraction ranging from 70 to 80 %. However, the large compressive stress of ta-C coating limits to apply thick ta-C coating. In this study, the thick ta-C coating was deposited onto Inconel alloy disk by the FCVA technique. The thickness of the ta-C coating was about $3.5{\mu}m$. The tribological behaviors of ta-C coated disks sliding against $Si_3N_4$ balls were examined under elevated temperature divided into 23, 100, 200 and $300^{\circ}C$. The range of temperature was setting up until peel off observed. The experimental results showed that the friction coefficient was decreased from 0.14 to 0.05 with increasing temperature up to $200^{\circ}C$. At $300^{\circ}C$, the friction coefficient was dramatically increased over 5,000 cycles and then delaminated. These phenomenon was summarized two kinds of reasons: (1) Thermal degradation and (2) graphitization of ta-C coating. At first, the reason of thermal degradation was demonstrated by wear rate calculation. The wear rate of ta-C coatings showed an increasing trend with elevated temperature. For investigation of relationship between hardness and graphitization, thick ta-C coatings(2, 3 and $5{\mu}m$) were additionally deposited. As the thickness of ta-C coating was increased, hardness decreased from 58 to 49 GPa, which means that graphitization was accelerated. Therefore, now we are trying to increase $sp^3$ fraction of ta-C coating and control the coating parameters for thermal stability of thick ta-C at high temperatures.

  • PDF

A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools (드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.