• Title/Summary/Keyword: Diamond thin film

Search Result 235, Processing Time 0.033 seconds

Parametric study of diamond/Ti thin film deposition in microwave plasma CVD (공정변수에 따른 microwave plasma CVD 다이아몬드/Ti 박막 증착 양상 조사)

  • Cho Hyun;Kim Jin Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • Effects of CH₄/H₂ flow rate ratio, chuck bias and microwave power on the structural properties and particle densities of diamond thin films deposited on Ti substrates in microwave plasma CVD were examined. High quality diamond thin films were deposited on Ti substrates in 2∼3 CH₄ Vol.% conditions due to the preferential formation of sp³-bonus ana selective removal of sp²-bonus in the CH₄/H₂ mixtures, and the mechanism for the formation of diamond particles on Ti was analysed. Diamond particle density increased with increasing negative chuck bias to Ti substrate due to bias-enhanced nucleation of diamond and the threshold voltage was found at ∼-50 V. With increasing microwave power the evolution from micro-crystalline graphite layer to diamond layer was observed.

Boron-doped Diamond Thin Film for Electrochemical Biosensors

  • Jianzhong-Zhu;Lu-Deren
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.156-158
    • /
    • 1998
  • This paper describes the preparation of boron-doped polycrystalline diamond thin film whose electrical resitivity is lower than $10^{-1}\Omega$cm. The 1$\times$1$\textrm{mm}^2$ microelectrodes, its conducting line with 0.2mm wide and 0.5$\times$0.5$\textrm{mm}^2$ pads was patterned by reactive ion beam etching. A glucose microsensor based on diamond film microelectrode and pyramidal containment produced on silicon by anisotropic etching was developed. Its advantages are high sensitivity and high stability.

  • PDF

Synthesis of Diamond Thin Film by RF PACVD from $\textrm{H}_2$-$\textrm{CH}_4$ Mixed Gas (고주파 플라즈마 CVD에 의한 $\textrm{H}_2$-$\textrm{CH}_4$ 계로부터 다이아몬드 박막의 합성)

  • 임헌찬
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.13-18
    • /
    • 1999
  • Diamond film was deposited on Si wafer using $\textrm{H}_2$ and $\textrm{CH}_4$ mixed gas by RF PACVD. Prior to deposition, mechanical scratching was done to improve density of nucleation sites with diamond paste of $1\mu\textrm{m}$ The microstructure of deposited film was studied at various methane concentrations. The deposited film was characterized by XRD(X-tay diffraction), SEM(Scanning Electron Microscopy) and Raman Spectroscopy The deposited diamond film showed that the crystallite was increased at the lower methane concentration.

  • PDF

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.

Investigation on Liquid Crystal Alignment Effects of SiNx Thin Film Irradiated by Ion Beam (이온 빔 조사된 SiNx 박막의 액정 배향 효과에 관한 연구)

  • Lee, Sang-Keuk;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jin-Woo;Kang, Dong-Hun;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.398-398
    • /
    • 2007
  • Most recently, the Liquid Crystal (LC) aligning capabilities achieved by ion beam exposure on the diamond-like carbon (DLC) thin film layer have been successfully studied. The DLC thin films have a high mechanical hardness, a high electrical resistance, optical transparency and chemical inertness. Nitrogen doped Diamond Like Carbon (NDLC) thin films exhibit properties similar to those of the DLC films and better thermal stability than the DLC films because C:N bonding in the NDLC film is stronger against thermal stress than C:H bonding in the DLC thin films. Moreover, our research group has already studied ion beam alignment method using the NDLC thin films. The nematic liquid crystal (NLC) alignment effects treated on the SiNx thin film layers using ion beam irradiation for three kinds of N rations was successfully studied for the first time. The SiNx thin film was deposited by plasma-enhanced chemical vapor deposition (PECVD) and used three kinds of N rations. In order to characterize the films, the atomic force microscopy (AFM) image was observed. The good LC aligning capabilities treated on the SiNx thin film with ion beam exposure for all N rations can be achieved. The low pretilt angles for a NLC treated on the SiNx thin film with ion beam irradiation were measure.

  • PDF

EO Characteristics of the ion Beam Aligned TN-LCD on the NDLC Thin Film Surface (NDLC 박막 위에 Ion Beam 배향한 TN-LCD의 전기광학특성)

  • Park, Chang-Joon;Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1054-1057
    • /
    • 2004
  • The nitrogenated diamond-like carbon (NDLC) exhibits high electrical resistivity and thermal conductivity that are similar to the properties shown by diamond-like carbon (DLC) films. These diamond-like transparent properties in NDLC come in a material consisting of $sp^2$-bonded carbon versus the $sp^3$-carbon of DLC. The diamond-like properties and nondiamond-like bonding make NDLC an attractive candidate for applications. Liquid crystal (LC) alignment capabilities with ion beam exposure on NDLC thin films and electro-optical (EO) performances of the ion-beam-aligned twisted nematic liquid crystal display (TN-LCD) with oblique ion beam exposure on the NDLC thin film surface were studied. An excellent uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the NDLC thin films was observed. In addition, it can be achieved that the good EO properties of the ion-beam-aligned TN-LCD. Finally, we will present the residual DC property of the ion-beam-aligned TN-LCD on the NDLC thin film surface.

  • PDF

Charged Cluster Model as a New Paradigm of Crystal Growth

  • Nong-M. Hwang;In-D. Jeon;Kim, Doh-Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.87-125
    • /
    • 2000
  • A new paradigm of crystal growth was suggested in a charged cluster model, where charged clusters of nanometer size are suspended in the gas phase in most thin film processes and are a major flux for thin film growth. The existence of these hypothetical clusters was experimentally confirmed in the diamond and silicon CVD processes as well as in gold and tungsten evaporation. These results imply new insights as to the low pressure diamond synthesis without hydrogen, epitaxial growth, selective deposition and fabrication of quantum dots, nanometer-sized powders and nanowires or nanotubes. Based on this concept, we produced such quantum dot structures of carbon, silicon, gold and tungsten. Charged clusters land preferably on conducting substrates over on insulating substrates, resulting in selective deposition. if the behavior of selective deposition is properly controlled, charged clusters can make highly anisotropic growth, leading to nanowires or nanotubes.

  • PDF

Microstructure analysis of DLC thin film fabricated by filtered arc ion plating method

  • Park, Y.P.;Kim, T.G.;Cheon, M.W.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.363-367
    • /
    • 2012
  • DLC (diamond liked carbon) coating of the tungsten carbide (WC) alloy core surface for molding a glass aspheric lens improves the quality of glass lens and the molding core and is characterized by high hardness, high elasticity, abrasion resistance and chemical stability. In this study, the effect of DLC coating of a thin film by means of the filtered AIP (arc ion plating) technique was examined on Ra and shape of the coated surface. Roughness before and after DLC coating was measured and the result showed that the roughness was improved after coating as compared to before coating. It was observed that DLC coating of the WC alloy core surface for molding had an effect on improving the roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

Diamond Film Growth by Vapor Activation Method Using ${CH_3}OH/{H_2}O$ Gas (HFCVD법에 의한 ${CH_3}OH/{H_2}O$ 혼합기체의 다이아몬드 박막성장에 관한 연구)

  • Lee, Gwon-Jae;Go, Jae-Gwi
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1014-1019
    • /
    • 2001
  • The diamond thin film was deposited on Si(100) substrate from$CH_3OH/H_2O$mixtured gas using a hot filament chemical vapor deposition(HFCVD) method. The deposition condition for samples has been varried with the$CH_3OH/H_2O$composition. Scanning electron microscopy(SEM) and Raman spectroscopy has been employed for the sample analysis. The diamond sample has been obtained below 20Pa with$CH_3OH/H_2O$mixtured gas. The crystallinity of diamond film improved as the composition $CH_3OH$decreases from 60Vol% to 52Vol%, and the sample structure changed from the cauliflower to the diamond structure. But the sample structure was becomes cauliflower at 50Vol% of in$CH_3OH$ in the $CH_3OH/H_2O$. It was shown that the$CH_3OH$ has threshold composition.

  • PDF