• Title/Summary/Keyword: Diamond disk

Search Result 104, Processing Time 0.024 seconds

The Characterization of the Conditioner Disks with Various Diamond Shapes (다이아몬드 형상에 따른 컨디셔너 디스크의 특성 평가)

  • Kim, Kyu-Chae;Kang, Young-Jae;Yu, Young-Sam;Park, Jin-Goo;Won, Young-Man;Oh, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.563-564
    • /
    • 2006
  • Recently, CMP (Chemical Mechanical Polishing) is one of very important processing in semiconductor technology because of large integration and application of design role. CMP is a planarization process of wafer surface using the chemical and mechanical reactions. One of the most important components of the CMP system is the polishing pad. During the CMP process, the pad itself becomes smoother and glazing. Therefore it is necessary to have a pad conditioning process to refresh the pad surface, to remove slurry debris and to supply the fresh slurry on the surface. A diamond disk use during the pad conditioning. There are diamonds on the surface of diamond disk to remove slurry debris and to polish pad surface slightly, so density, shape and size of diamond are very important factors. In. this study, we characterized diamond disk with 9 kinds of sample.

  • PDF

Interrelation of the Diamond Disk and pad PCR in the CMP Process (CMP 공정에서 Diamond Disk와 Pad PCR 상관관계 연구)

  • Yun, Young-Eun;No, Yong-Han;Yoon, Bo-Earn;Bae, Sung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.359-361
    • /
    • 2006
  • As circuits become increasingly complex and devices sizes shrinks, the demands placed on global planarization of higher level. Chemical Mechanical Polishing (CMP) is an indispensable manufacturing process used to achieve global planarity. In the CMP process, Diamond Disk (DD) plays an important role in the maintenance of removal rate. According to studies, the cause of removal rate decrease in the early or end stage of diamond disk lifetime comes from pad surface change. We also presented pad cutting rate (PCR) as a useful cutting ability index of DD and studied PCR trend about variable parameters that including size, hardness, shape of DD and RPM, pressure of conditioner It has been shown that PCR control ability of pressure and shape is superior to RPM and size. High pressure leads to a decrease of cell open ratio of pad surface because polyurethane of pad is destroyed by pressure. So low pressure high RPM condition is a proper removal rate sustain. By examining correlations between RPM and pressure of conditioner, it has been shown that PCR safe zoneto satisfy proper removal rate has the range 0.06mm/hr to 0.12mm/hr.

  • PDF

Mechanical Properties of CVD Diamond

  • Yoshikawa, Masanori;Hirata, Atsushi
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.212-215
    • /
    • 1996
  • This paper focuses the strength and wear resistance of CVD diamond films. The strength of free-standing CVD diamond films synthesized by microwave plasm CVD, DC plasma CVD, RF plasma CVD and arc discharge plasma jet CVD has been measured by three-point bending test. The wear resistance of CVD diamod films has been evaluated by the pin-on-disk type testing. diamond films coated on the base of sintered tungsten carbide pin by hot filament CVD have been rubbed with a sintered diamond disk in muddy water. Volume removed wear of CVD diamond has been compared with stellite, WC alloy and bearing steel.

  • PDF

The Conditioning Behaviors of Diamond CVD Deposited Seramic CMP Conditioner (다이아몬드 CVD 증착에 의한 세라믹 CMP Conditioner의 Conditioning 거동)

  • Kang, Young-Jae;Eom, Dae-Hong;Park, Jum-Yong;Park, Jin-Gu;Ko, Soong;Myung, Beom-Young;Lee, Sang-Ik;Kwon, Pan-Gi
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.270-273
    • /
    • 2002
  • Conditioning은 CMP(Chemical Mechanical Planarization)에 필수적인 공정중의 하나이다. Conditioning의 목적은 removal rate와 uniformity를 CMP 공정 중에서 일정하게 유지시키는데 목적이 있다. 예전의 conditioning disks는 stainless steel substrate 위에 diamond 입자를 올리고 Ni전기도금을 결합시켜서 사용하였다. 그러나, CMP 공정 중에 Ni의분해로 인한 금속의 오염과 diamond abrasive의 분리로 인하여 scratch 문제가 발생하였다. 이 문제를 해결하기 위해서 ceramic substrate와 그것을 정밀 가공하는 기술을 응용함으로써 본래의 conditioning disks가 가지고 있는 diamond 입자의 분리와 metals 분해의 문제를 해결할 수 있게 되었다.

  • PDF

The Pad Recovery as a function of Diamond Shape on Diamond Disk for Metal CMP (Metal CMP 용 컨디셔너 디스크 표면에 존재하는 다이아몬드의 형상이 미치는 패드 회복력 변화)

  • Kim, Kyu-Chae;Kang, Young-Jae;Yu, Young-Sam;Park, Jin-Goo;Won, Young-Man;Oh, Kwang-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.47-51
    • /
    • 2006
  • Recently, CMP (Chemical Mechanical Polishing) is one of very important processing in semiconductor technology because of large integration and application of design role. CMP is a planarization process of wafer surface using the chemical and mechanical reactions. One of the most important components of the CMP system is the polishing pad. During the CMP process, the pad itself becomes smoother and glazing. Therefore it is necessary to have a pad conditioning process to refresh the pad surface, to remove slurry debris and to supply the fresh slurry on the surface. A conditioning disk is used during the pad conditioning. There are diamonds on the surface of diamond disk to remove slurry debris and to polish pad surface slightly, so density, shape and size of diamond are very important factors. In this study, we characterized diamond disk with 9 kinds of sample.

  • PDF

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

An Investigation of the Enhancement of Abrasive Ability of Diamond Film by Surface Modification (다이아몬드 박막의 표면 개질을 통한 연마성능 향상에 대한 실험적 고찰)

  • 나종주;이구현;남기석;이상로;백영준
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • In order to identify the effect of lubricant films on abrasive abilities of diamond films, wear rates of Ruby balls slid over as grown diamond films and polytetrafluoroethylene films coated diamond films were compared by using pin-on-disk tribometer. Wear scars of Ruby balls were measured by SEM. Results showed that wear rates of Ruby balls slid over polytetrafluoroethylene coated diamond films were about 4 times lager than as grown diamond films. Coefficients of friction decreased with sliding distance at diamond disks but were almost unchanged at polytetrafluoroethylene coated ones. These results came from behaviors of wear debris, which adhered more strongly in the tracks of as grown diamond films than polytetrafluoroethylene coated ones.

A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices (MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석)

  • Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1010-1013
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were Prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas for the application to solid lubricant of MEMS devices. We have checked the influence of varying RF power on tribological properties of DLC film. We have checked their performance as two kinds of method such as FFM (Friction Force Microscope) and BOD (Ball-on Disk) measurement. The friction coefficients and the contact number of cycles to steady state decreased as the increase of RF power with FFM and BOD measurement, respectively.

Effects of Temperature and Humidity on the Friction and Wear Properties of DLC Film on the Hard Disk (하드디스크 DLC 필름의 마찰 마모특성에 대한 온도와 습도의 영향)

  • Ahn, J.Y.;Kim, D.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.876-881
    • /
    • 2001
  • DLC(Diamond-like carbon) films possess high hardness, low friction coefficient, and good wear resistance. Due to these properties, DLC films have been used extensively in magnetic hard disk industry. The objective of the present study was to investigate the influence of environmental condition on the tribological behavior of DLC coated hard disk. It is found that the tribological characteristics of DLC films are strongly affected by relative humidity and temperature. Specifically, the friction coefficient increases with increase in temperature at relative humidity of 50%. However, at 20% and 85% RH the effect of temperature was not significant. Also, the degree of wear could be observed using an AFM.

  • PDF

Comparison of Characteristics of Texture and Groove Precision Lapping Plate by Measuring Frictional Forces (마찰력 측정을 이용한 홈(Groove) 및 임의패턴 초정밀 연마판의 특성 비교)

  • Loh, Byoung-Gook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.21-26
    • /
    • 2006
  • Characteristics of texture and groove precision lapping plate are experimentally investigated by Measuring frictional forces. It is found that the frictional coefficient decreases as the embedding of diamond particles progresses. The groove precision lapping plate with concentric micro-channels indicates superior capability in embedding micrometer-sized diamond particles and uniformity in diamond embedding compared with the texture precision lapping plate with a series of circular micro-channels.

  • PDF