• Title/Summary/Keyword: Diamond cutting tool

Search Result 186, Processing Time 0.031 seconds

Diamond Tools with Diamond Grits Set in a Predetermined Pattern

  • Sung, James C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.881-882
    • /
    • 2006
  • In 1997, Dr. James Chien-Min Sung patented the technology of making diamond tools according to a predetermined pattern. The optimization of this pattern may double the tool life and the cutting speed. In 1998, Sung also made $DiaGrid^{(R)}$ saw segments that showed superior performance in cutting granite and marble. In 2000, Sung visited Shinhan and introduced them this revolutionary concept of diamond saw segments. In 2005, Shinhan adapted the idea and produced saw segments with diamond grits set in a predetermined pattern, their results confirmed that the sawing speed and the sawing life were both improved over conventional designs.

  • PDF

Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool (단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교)

  • Choi, Hwan-Jin;Jeon, Eun-Chae;Choi, Doo-Sun;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

A Study on the Surface Roughness in Ultra-Precision Cutting of Electroless Nickel (무전해 니켈의 초정밀 절삭에 의한 표면거칠기 연구)

  • 권우순;김동현;난바의치
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.538-541
    • /
    • 2003
  • Ultra-precision machining was carried out on a electroless nickel materials using single crystal diamond tools. The effects of the cutting velocity, the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness were studied. In this paper, the cutting condition for getting nano order smooth surface of electroless nickel have been examined experimentally by the ultra-precision machine and single crystal diamond tools. And also. the surface roughness was measured by the three dimension

  • PDF

A Study on the Drilling Characteristics of Carbon Fiber Epoxy Composite Materials by Diamond Grit Electroplated Drills (다이아몬드 입자 전착드릴에 의한 탄소섬유 에폭시 복합재료의 드릴링 특성에 관한 연구)

  • Kim, Hyeong-Chul;Kim, Ki-Soo;Hahm, Seung-Duck;Kim, Hong-Bea;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.27-38
    • /
    • 1995
  • For solving troubles happened during the drilling process with carbon fiber epoxy composite materials(CFRP) by using HSS drill, a few types of diamond gift electroplated drills are manufactured, and machinability of these drills is experimented with a variety of cutting speed and feed rate. These drills have some advantages of good wear resistant and the conception of grinding process. As a result, using of these drills improves both troubles being caused by tool wear and damage of exit surface depending on fiber stacking angle. It is desirable that cutting conditions for the cutting thickness per revolution must be set under 0.01mm when the size of a diamond grit is # 60 .approx. 80.

  • PDF

A Study on the Machinability of Electroless Nickel by the Ultra-Precision Diamond Turning (초정밀 다이아몬드 터닝에 의한 무전해 니켈의 피삭성 연구)

  • 김우순;김동현;난바의치
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.27-33
    • /
    • 2004
  • The ultra-precision cutting is a key technique for the manufacture of optical components such as aluminium mirrors, electroless nickel mirror, plastic mirror in a variety of advanced science and technology applications. The paper presents experimental results of ultra-precision diamond fuming of electroless nickel materials. In general, the cutting condition such as feed rate and depth of rut, have effect on the surface roughness in ultra-precision diamond turning. To obtain an optimal cutting condition, we studied the effect of the cutting speed. the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness. So, the relationship of the surface roughness and cutting condition has been clarified. From the experimental results, the machined surface roughnesses were obtained less than 1nm rms.

The Minimizing of Cutting Depth using Vibration Cutting (진동절삭법을 이용한 절삭깊이의 최소화)

  • 손성민;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.38-45
    • /
    • 2004
  • This paper discusses the minimum cutting thickness with a continuous chip in sub-micrometer order precision diamond cutting. An ultra precision cutting model is proposed, in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness. The experimental results verify the proposed model and provide various supporting evidence. In order to reduce the minimum cutting thickness a vibration cutting method is applied, and the effects are investigated through a series of experiments under the same conditions as conventional cutting method.

Tool Holder Design and Cutting Force Measurement of Diamond Turning Process (다이아몬드 터닝의 미세 절삭력 측정을 위한 tool holder 설계 및 절삭력 측정)

  • Jeong, S.H.;Kim, S.S.;Do, C.J.;Hong, K.H.;Kim, G.H.;Rui, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.507-512
    • /
    • 2001
  • In this work, tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces.

  • PDF

Study on mirror-like surface machining of Al alloy with edge form of single crystal diamond tools (천연 다이아몬드 인선형태에 의한 Al 합금의 경면절삭에 관한 연구)

  • 김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1515-1522
    • /
    • 1990
  • Ultra precision cutting should be satisfied with two conditions of Mirror Like and shape grade, and especially Mirror Like depends on surface roughness. In this study, in order to develop Mirror Cutting for Al alloy, this was done with edge form of single crystal diamond tool divided into R type and S type. Surface roughness machined by S type tool is more satisfactory than by R type tool, being the lowest value of 13.8nm. In addition, Mirror surface can reach above 90% of reflection rate by both R type and S type tool, but machined surface by R type tool has much more fine fracture portions rather than by S type tool. Even though feed rate decreases from 5.mu.m to 1.mu.m, surface roughness doesn't show improvement.

Construction of Chaos Simulator for Cutting Characteristics Evaluation of Non-Ferrous Metals (비철금속의 절삭성 평가를 위한 카오스 시뮬레이터의 구축)

  • 이종대;윤인식
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.22-28
    • /
    • 2003
  • This study proposes the construction of chaos simulator for cutting characteristics evaluation of non-ferrous metals. Also this paper aims to find the optimal cutting conditions of diamond turning machine by measuring surface form and roughness to perform the cutting experiment of non-ferrous metals, which are aluminum, with diamond tool. As well, according to change cutting conditions such as fled rate, using diamond turning machine to perform cutting processing, by measuring cutting force and surface roughness and according to cutting conditions the aluminum about cutting properties. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics. Constructed chaos simulator in this study can be used for cutting characteristics evaluation of non-ferrous metals.