• Title/Summary/Keyword: Diamond Slurry

Search Result 33, Processing Time 0.032 seconds

A Study on the Ultrasonic Conditioning for Interlayer Dielectic CMP (층간절연막 CMP의 초음파 컨디셔닝 특성에 관한 연구)

  • 서헌덕;정해도;김형재;김호윤;이재석;황징연;안대균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.854-857
    • /
    • 2000
  • Chemical Mechanical Polishing(CMP) has been accepted as one of the essential processes for VLSI fabrication. However, as the polishing process continues, pad pores get to be glazed by polishing residues, which hinder the supply of new slurry. This defect makes removal rate decrease with a number of polished wafer and the desired within-chip planarity, within wafer and wafer-to-wafer nonuniformity are unable to be achieved. So, pad conditioning is essential to overcome this defect. The eletroplated diamond grit disk is used as the conventional conditioner, And alumina long fiber, the .jet power of high pressure deionized water and vacuum compression are under investigation. But, these methods have the defects like scratches on wafer surface by out of diamond grits, subsidences of pad pores by over-conditioning, and the limits of conditioning effect. To improve these conditioning methods. this paper presents the Characteristics of Ultrasonic conditioning aided by cavitation.

  • PDF

A Study on Novel Conditioning for CMP (화학기계적연마(CMP) 컨디셔닝에 관한 연구)

  • Lee, Sung-Hoon;Kim, Hyoung-Jae;Ahn, Dae-Gyun;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.40-47
    • /
    • 1999
  • In CMP for semiconductor wafer films, the acceptable within-chip planarity, within-wafer and wafer-to-wafer nonuniformity could be achieved by conditioning. The role of conditioning is to remove continuously polishing residues from pad and to maintain the initial pad surface pores. To reach these requirements, the diamond grits disk has been considered as a conventional conditioner. However, we have investigated many defects as scratch on wafers out of diamond grits shedding, contaminations from bonding materials, and pad pore subsidences by over-conditioning. So, this paper studies the effect of ultrasonic vibration in CMP conditioning as a representative. The effect of ultrasonic vibration was certified through ILD, Metal CMP.

  • PDF

A Study on Interlayer Dielectric CMP Using Diamond Conditioner (다이아몬드 컨디셔너를 이용한 ILD CMP에 관한 연구)

  • 서헌덕;김형재;김호윤;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.86-89
    • /
    • 2003
  • Chemical Mechanical Planarization(CMP) has been accepted as the most effective processes for ultra large scale integrated (ULSI) chip manufacturing. However, as the polishing process continues, pad pores get to be glazed by polishing residues, which hinder the supply of new slurry. And pad surface is ununiformly deformed as real contact distance. These defects make material removal rate(MRR) decrease with a number of polishied wafer. Also the desired within-chip planarity, within wafer non-uniformity(WIWNU) and wafer to wafer non-uniformity(WTWNU) arc unable to be achieved. So, pad conditioning in CMP Process is essential to overcome these defects. The eletroplated or brazed diamond conditioner is used as the conventional conditioning. And. allumina long fiber, the jet power of high pressure deionized water, vacuum compression. ultrasonic conditioner aided by cavitation effect and ceramic plate conditioner are once used or under investigation. But. these methods arc not sufficient for ununiformly deformed pad surface and the limits of conditioning effect. So this paper focuses on the characteristics of diamond conditioner which reopens glazed pores and removes ununiformly deformed pad away.

  • PDF

Optimization of chemical mechanical polishing for bulk AlN single crystal surface (화학적 기계적 연마 공정을 통한 bulk AlN 단결정의 표면 가공)

  • Lee, Jung Hun;Park, Cheol Woo;Park, Jae Hwa;Kang, Hyo Sang;Kang, Suk Hyun;Lee, Hee Ae;Lee, Joo Hyung;In, Jun Hyeong;Kang, Seung Min;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.51-56
    • /
    • 2018
  • To evaluate surface characteristics of AlN single crystal grown by physical vapor transport (PVT) method, chemical mechanical polishing (CMP) were performed with diamond slurry and $SiO_2$ slurry after mechanical polishing (MP), then the surface morphology and analysis of polishing characteristics of the slurry types were analyzed. To estimate how pH of slurry effects polishing process, pH of $SiO_2$ slurry was controlled, the results from estimating the effect of zeta potential and MRR (material removal rate) were compared in accordance with each pH via zeta potential analyzer. Eventually, surface roughness RMS (0.2 nm) could be derived with atomic force microscope (AFM).

Effect of the Control of Bowing in Free-standing GaN by Mechanical Polishing (Freestanding GaN 기판의 Ga-polar 면에 기계적 연마 방법을 적용한 Bow 제어 및 그 특성 연구)

  • Gim, Jinwon;Son, Hoki;Lim, Tae-Young;Lee, Mijai;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Jung, Jung-Young;Oh, Hae-Kon;Kim, Jin-Hun;Choi, YoungJun;Lee, Hae-Yong;Yoon, Dae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.776-780
    • /
    • 2015
  • In this paper, we have studied the effect of mechanical polishing to Ga-polar face for reducing the wafer bowing and strain in free-standing GaN. After the mechanical polishing to Ga-polar face, the bowing of the free-standing GaN substrate significantly decreased with increasing the size of diamond slurry, and eventually changed the bowing direction from concave to convex. Furthermore, the full width at half maximum (FWHM) of high-resolution X-ray diffraction (HR-XRD) were decreased, especially the FWHM of (1 0 2) reflection for $1.0{\mu}m$ size of diamond slurry was significantly decreased from 630 to 203 arcsec. In the case, we confirmed that the compressive strain in Ga-polar face was fully released by Raman measurement.

The Effect of Slurry and Wafer Morphology on the SiC Wafer Surface Quality in CMP Process (CMP 공정에서 슬러리와 웨이퍼 형상이 SiC 웨이퍼 표면품질에 미치는 영향)

  • Park, Jong-Hwi;Yang, Woo-Sung;Jung, Jung-Young;Lee, Sang-Il;Park, Mi-Seon;Lee, Won-Jae;Kim, Jae-Yuk;Lee, Sang-Don;Kim, Ji-Hye
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.312-315
    • /
    • 2011
  • The effect of slurry composition and wafer flatness on a material removal rate (MRR) and resulting surface roughness which are evaluation parameters to determine the CMP characteristics of the on-axis 6H-SiC substrate were systematically investigated. 2-inch SiC wafers were fabricated from the ingot grown by a conventional physical vapor transport (PVT) method were used for this study. The SiC substrate after the CMP process using slurry added oxidizers into slurry consisted of KOH-based colloidal silica and nano-size diamond particle exhibited the significant MRR value and a fine surface without any surface damages. SiC wafers with high bow value after the CMP process exhibited large variation in surface roughness value compared to wafer with low bow value. The CMPprocessed SiC wafer having a low bow value of 1im was observed to result in the Root-mean-square height (RMS) value of 2.747 A and the mean height (Ra) value of 2.147 A.

The contamination prevention of diamond conditioner by anti-contamination film coating (오염방지막 코팅을 통한 Diamond Conditioner의 표면오염 방지)

  • Son, Il-Ryong;Kang, Young-Jae;Kim, In-Kwon;Kim, In-Gon;Jeon, Jeong-Bin;Kim, Tae-Jin;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.114-114
    • /
    • 2008
  • 반도체 device의 성능을 향상시키기 위하여 패턴은 더욱 더 고 집적화 되고 배선 또한 다층배선 구조를 가지게 되었으며 요구되는 선폭 또한 더욱 미세화 되어 CMP 공정이 도입되게 되었다. 이러한 CMP 공정에 사용되는 소모품으로는 크게 세 가지의 중요한 부분으로 나눌 수 있다. 그것은 slurry와 pad, conditioner이다. 그중에 pad conditioning 공정은 CMP 공정시 pad의 마모에 따라 감소하는 removal rate(RR)값을 회복시키기 위한 공정으로 마모된 pad의 표면을 활성화 시켜주는 중요한 공정이다. 하지만 pad conditioning 공정을 장시간 진행하게 되면 conditioner 표면에 오염물이 발생하게 되며, 오염물로 인하여 wafer표면에 scratch 및 defect을 발생시키는 원인이 될 수 있다. 이러한 문제점을 보완하기 위하여 conditioner의 표면을 변화시켜 공정중의 오염이 발생하지 않도록 하는 것이 중요하다. 본 논문에서는 oxide CMP 실험을 통하여 conditioner표면에 오염물이 발생함을 확인하였으며 energy dispersive spectroscopy(EDS) 분석을 통하여 주오염물의 성분이 oxide slurry중 silica임을 확인하였다. Conditioner의 표면을 소수성으로 만들기 위하여 self assembled monolayer(SAM) 방법을 이용하여 표면에 코팅을 하였으며, 소수성 박막이 코팅된 conditioner와 코팅되지 않은 conditioner의 비교 실험을 통하여 오염 정도를 비교하였다.

  • PDF

Modeling and multiple performance optimization of ultrasonic micro-hole machining of PCD using fuzzy logic and taguchi quality loss function

  • Kumar, Vinod;kumari, Neelam
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.129-146
    • /
    • 2012
  • Polycrystalline diamond is an ideal material for parts with micro-holes and has been widely used as dies and cutting tools in automotive, aerospace and woodworking industries due to its superior wear and corrosion resistance. In this research paper, the modeling and simultaneous optimization of multiple performance characteristics such as material removal rate and surface roughness of polycrystalline diamond (PCD) with ultrasonic machining process has been presented. The fuzzy logic and taguchi's quality loss function has been used. In recent years, fuzzy logic has been used in manufacturing engineering for modeling and monitoring. Also the effect of controllable machining parameters like type of abrasive slurry, their size and concentration, nature of tool material and the power rating of the machine has been determined by applying the single objective and multi-objective optimization techniques. The analysis of results has been done using the MATLAB 7.5 software and results obtained are validated by conducting the confirmation experiments. The results show the considerable improvement in S/N ratio as compared to initial cutting conditions. The surface roughness of machined surface has been measured by using the Perthometer (M4Pi, Mahr Germany).