• 제목/요약/키워드: Diamond film

검색결과 446건 처리시간 0.025초

2단계 성장법을 통한 근사단결정의 다이아몬드 박막 합성 (Highly Oriented Textured Diamond Films on Si Substrate though 2-step Growth Method)

  • 김도근;성태연;백영준
    • 한국재료학회지
    • /
    • 제9권11호
    • /
    • pp.1049-1054
    • /
    • 1999
  • 근사단결정 다이아몬드막 성장시 입자의 정렬을 개선하기 위한 집합조직성장의 2단계 성장방법을 제안하였다. 메탄조성 4%, 기판온도 $850^{\circ}C$ 조건에서 (100) Si 기판에 - 200V 바이어스를 인가하여 20분동안 전처리 하였다. 처리한 기판을 2%[CH$_4$], 기판온도 $810^{\circ}C$에서 2~35시간동안 <100> 집합조직을 지니도록 1단계로 성장시켰다. 이 시편의 성장표면을 평탄화하기 위하여 (100) 면이 성장하도록 2% [CH$_4$], 기판온도 $850^{\circ}C$ 조건에서 2단계 성장시켰다. 1단계 성장시간에 따른 다이아몬드막의 배열정도를 {111} X-ray pole figure의 반가폭 변화를 통해 관찰하였다. 1단계 성장 후 입자정렬은 막의 두께가 증가할수록 개선되었다. 그러나 <100> 집합조직의 표면조직은 피라미드 형태의 굴곡을 피할 수 없었다. 2단계 성장시 (100) 면의 성장으로 인해 막의 표면은 평탄화되었으며, 이때 입자의 정렬은 1단계 성장시간에 크게 의존하였다.

  • PDF

Diamond-Like Carbon 박막의 광학적 특성에 관한 연구 (A Study on the Optical Properties of Diamod-Like Carbon Film)

  • 권도현;박성계;남승의;김형준
    • 한국진공학회지
    • /
    • 제10권2호
    • /
    • pp.194-200
    • /
    • 2001
  • 13.56 MHz rf플라즈마를 이용하여 증착된 DLC(diamond-like carbon) 박막의 광학적 특성에 대해 조사하였다. $CH_4$가스를 원료가스로 하여 PECVD법에 의해 DLC 박막을 형성하였으며 이때 RF power, working pressure, 보조가스의 종류 및 양에 따른 투과도(transmittance)와 optical band gap의 변화를 관찰하였다. RF power가 증가하고 working pressure가 높을수록 optical band gap이 감소하는 결과를 얻을 수 있었고. FT-IR분석을 이용하여 탄소-수소 결합 양을 관찰함으로써 DLC 박막의 결합구조 변화를 증명할 수 있었다. 그리고 수소와 질소를 첨가한 경우 증착시 탄소-수소 결합을 끊는 역할을 하여 optical band gap이 감소하는 결과를 얻을 수 있었다.

  • PDF

DLC 코팅된 가이드레일을 이용한 볼베어링 직선 이송 스테이지의 진공환경 제어 특성 분석 (Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail)

  • 심종엽;김경호;황주호
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.

$CH_4-H_2-O_2$계로부터 성장된 Diamond 박막의 Raman spectra (Raman spectra of Diamond thin film grown from $CH_4-H_2-O_2$ system)

  • 구효근;박승태;최종규;박상현;박재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1490-1492
    • /
    • 1994
  • Diamond thin films were deposited on Si substrate from $CH_4-H_2-O_2$ system by MWPECVD at the condition of power of 800W, pressure of 80torr, $H_2$ flow rate of $75{\sim}81sccm$, $O_2$ flow rate of $0{\sim}3.8sccm$, $CH_4$ flow rate of $4.8{\sim}9sccm$, substrate temp, of $950{\sim}1010^{\circ}C$ and deposition time of 5hr. The deposited films were characterized by SEM, XRD and Raman spectroscopy. The growth rates of thin films and particles was measured. Good quality were synthesized at 40% of oxygen concentration which 6% of fixed metane concentration, and at 50%. Its deposition rates were $2.4{\mu}m/h$ respectively. As oxygen concentration increased, it was known that the broad peak of $1350 cm^{-1}$ was shifted to $1332cm^{-1}$ due to etching of carbon component.

  • PDF

Development of Highly Conductive and Corrosion-Resistant Cr-Diamond-like Carbon Films

  • Ko, Minjung;Jun, Yee Sle;Lee, Na Rae;Kang, Suhee;Moon, Kyoung Il;Lee, Caroline Sunyong
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.317-324
    • /
    • 2019
  • Cr-diamond-like carbon (Cr-DLC) films were deposited using a hybrid method involving both physical vapor deposition and plasma-enhanced chemical vapor deposition. DLC sputtering was carried out using argon and acetylene gases. With an increase in the DC power, the Cr content increased from 14.7 to 29.7 at%. The Cr-C bond appeared when the Cr content was 17.6 at% or more. At a Cr content of 17.6 at%, the films showed an electrical conductivity of > 363 S/cm. The current density was 9.12 × 10-2 ㎂/㎠, and the corrosion potential was 0.240 V. Therefore, a Cr content of 17.6 at% was found to be optimum for the deposition of the Cr-DLC thin films. The Cr-DLC thin films developed in this study showed high conductivity and corrosion resistance, and hence, are suitable for applications in separators.

PVD방식을 이용한 NDLC 박막에서의 액정 배향 효과 (Liquid Crystal orientation on the NDLC Thin Film Deposited using physical deposition method)

  • 이원규;오병윤;임지훈;나현재;이강민;박홍규;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.301-301
    • /
    • 2008
  • Ion beam (IB)-induced alignment of inorganic materials has been investigated intensively as it provides controllability in a nonstop process for producing high-resolution displays[1][2]. LC orientation via ion-beam (IB) irradiation on the nitrogen doped diamond like carbon (NDLC) thin film deposited by physical deposition method-sputtering was embodied. The NDLC thin film that was deposited by sputter showed uniform LC alignment at the 1200eV of the ion beam intensity. The pretilt angle of LC on NDLC thin films was measured with various IB exposure time and angle. The maximum pretilt angle were showed with IB irradiation angle of $45^{\circ}$ and exposure time of 62.5 sec, respectively. To show NDLC thin film stability in high temperature, thermal stability test was proceeded. The uppermost of the thermal stability of NDLC thin film was $200^{\circ}C$. In this investigation, the electro-optical (EO) characteristics of LC on NDLC thin film were measured.

  • PDF

프린터 토너의 점착력 특성 및 평가 기법 (Characteristics and Assessment of Printer Toner Adhesion)

  • 이정은;김광일;김현준;김대은
    • 정보저장시스템학회논문집
    • /
    • 제5권2호
    • /
    • pp.82-88
    • /
    • 2009
  • Understanding the adhesion behavior and characteristics of toner film is required to achieve image and text printing with high quality resolution. Toner can be considered as a thin film coating on a media such as paper or polymer film. Quantitative measurement of adhesion characteristics of the thin film is important to assess the reliability of the system. In this work the main objective was to investigate the adhesion characteristic between the toner and the media by ramp loading scratch test method. The scratch test may be used to obtain quantitative information about the adhesion of the film to the substrate. In the scratch test a diamond tip was used to scratch the surface of the toner film under an increasing normal load until the toner detached or fractured. The critical load (LC) was obtained from the experimental results. Also, the relationship between the critical load and the adhesive strength of the interface between the substrate and the toner was obtained by measuring the normal and tangential forces during the scratch test. Finally, theoretical analysis of the toner scratch characteristics was performed based on Benjamin and Weaver theory, Plowing model, and Laugier model.

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

레이저 공정변수 변화에 따른 다이아몬드상 카본박막의 전계방출 특성분석 (Investigation on field emission properties of diamond-like carbon thin film by variation of laser processing parameters)

  • 심경석;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1511-1513
    • /
    • 1999
  • In order to investigate the properties of diamond-like carbon(DLC) thin films depending on the deposition parameters, DLC thin films were systematically fabricated by pulsed laser deposition (PLD), DLC thin films have been shown advantageous field emission properties due to a negative electron affinity (NEA) and a low work function. At the atomic level. DLC is referred to the group of carbon materials with strong chemical bonding composition of $sp^2$ and $sp^3$ arrangements of atoms incorporated with an amorphous structure. The experiment was performed at substrate temperature in the range of room temperature to $600^{\circ}C$. The laser energy densiy was used to be in the range of $6J/cm^2$ to $20J/cm^2$, SEM, Raman, PL, XPS and field emission characteristics were used to investigate the DLC thin films.

  • PDF

Filtered Vacuum Arc를 이용한 WC-Co상 DLC 박막 증착에서의 기판 전압에 따른 밀착력 특성 평가 (Adhesion of Diamond-like Carbon Thin Film Prepared by Filtered Vacuum Arc: The Effect of Substrate Bias Voltage)

  • 김기택;양원균;이승훈;김도근;김종국
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.214-214
    • /
    • 2013
  • Diamond like carbon(DLC) 박막은 고경도, 저마찰, 내스크래치 특성을 요구하는 표면기술 응용분야에 널리 사용되며, 대면적 저가 코팅 방법 개발 및 물성 조절 기술이 요구된다. 본 연구에서는 Filtered Vacuum Arc (FVA)를 통해 증착되는 Hydrogen-free DLC 박막의 밀착력 제어를 위한 증착시 기판 전압에 따른 증착 및 밀착력 특성을 분석하였다. 기판전압이 0~-150 V 까지 변화함에 따른 스크래치 테스트 결과를 통해 최적 증착 조건을 도출하였다.

  • PDF