• Title/Summary/Keyword: Diamond film

Search Result 446, Processing Time 0.027 seconds

Erosion of Free Standing CVD Diamond Film (다이아몬드 후막의 Erosion 특성)

  • Kim, Jong-Hoon;Lim, Dae-Soon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.67-74
    • /
    • 1998
  • Two kinds of polished and unpolished freestanding films prepared by DC plasma CVD method were impacted by SiC particles to understand erosion mechanism. Erosion damage caused by solid impact was characterized by surface profilometer, scanning electron microscopy and Raman spectroscopy. Gradually decrease of surface roughness and sharp reduction of crystallinity for unpolished CVD films were observed with increasing erosion time. It was found that smaller grains of the diamond were removed in early stage of erosion process and larger grains were eroded with further impingement. By introduction of re-growth method on polished diamond, further understanding of erosion mechanism was achieved. Most of the surface fractures were initiated at the grain boundary.

  • PDF

Bonding structure of the DLC films deposited by RE-PECVD (RE-PECVD법에 의해 증착된 DLC박막의 결합 특성)

  • 최봉근;신재혁;안종일;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • The diamond-like carbon (DLC) films were deposited on the Si (100) wafer by a rf-PECVD method as a function of the mixture rate of methane-hydrogen gas and bias voltage. The bonding structure and mechanical properties of these deposited DLC films were investigated using FT-IR, Raman, and nano-indenter. The deposition rates of DLC films increased with increased flow rate of methane in the gas mixtures and increased bias voltage. The $sp^3/sp^2$ bonding ratio of carbon in thin film and the hardness increased with increasing flow rate of hydrogen in the gas mixtures and increasing bias voltage.

Tribological Charactristics of Diamond-like Carbon Deposited on Ferrite

  • Nam-Soo Kim;Dae Soon Lim;Heng-Wook Kim;Sang-Ro Lee
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.185-190
    • /
    • 1995
  • Tribological behavior of the diamond-like carbon (DLC) films sliding on floppy disk has been investigated. Hydrogenated DLC films have been prepared by plasma enhanced chemical vapor deposition (PECVD) using methane and hydrogen mixture in different volume ratios on ferrite substrates. DLC films show lower friction coefficients (0.2~0.4) than those of the uncoated ferrite(0.4~0.5). DLC films containing more hydrogen exhibit higher wear resistance. To investigate the roughness effect on wear, the substrates were polished with SiC papers prior to deposition. Too fine or too rough DLC surfaces result in poor wear resistance. Wear resistance of annealed DLC films at higher temperature slightly increases with respect to as-deposited film.

  • PDF

A Study on the Diamond thin firms Synthesized by Microwave Plasma Enhanced Chemical Vapor Deposition (Microwave Plasma CVD에 의한 Diamond 박막의 합성에 관한연구)

  • 이병수;이상희;이덕출;박상현;박구범;박종관;유도현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.289-292
    • /
    • 1998
  • The methastable state diamond films have been deposited on Si substrates using MWPCVD. Effects of each experimental parameters of MWPCVD including CH$_4$ concentrations, Oxygen additions, Operating pressure, deposition time, etc. on the growth rate and crystallinity were investigated. The best crystallinity of the finn at 3% methane concentration addition of oxygen to the CH$_4$-$H_2O$ mixture gave an improved film crystallinity at 50% oxygen concentration. Upon increasing the operating pressure and time, the growth rate and crystallinity were increased simultaneously.

  • PDF

DLC/Diamond 박막의 원자력분야 응용을 위한 기본연구

  • 박광준;전용범;서중석;박성원;진억용
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.223-230
    • /
    • 1997
  • 최근들어 그 활용도가 점점 증대되고 있는 DLU(Diamond-like Carbon) /Diamond 박막(thin film)의 합성기술을 개발하여 원자력분야에 응용하고자 시도하였다. 이를 위하여 13.56 MHz의 고주파(RF: radio-frequency)를 사용하는 플라즈마 화학증착(PECVD: Plasma Enhanced Chemical Vapor Deposition) 장치를 직접 제작하여 탄소함유(CH$_4$, $CO_2$...등) 기체로부터 기본적인 DLC 박막증착시험을 수행하였다. 실험은 진공증착기(vacuum chamber)내의 압력(pressure), 탄소함유 기체의 조성비, 그리고 바이어스전압(negative self-bias voltage)둥을 변화시키면서 수행하였다. 증착속도(deposition rate)는 증착층의 두께를 알파스템($\alpha$-step)으로 측정하여 결정하였으며, 이로부터 증착속도가 압력 및 바이어스 전압의 증가에 따라 증가함을 알 수 있었다. 또한 바이어스 전압 300V 이상에서 $CO_2$량 증가가 증착속도를 촉진시킨다는 사실도 확인하였다. 그리고 EPMA(electron probe micro-analyser) 및 Raman 스펙트럼분석을 통하여 증착층의 구조가 DLC 임을 확인하였다.

  • PDF

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

Effect of Residual Oxygen in a Vacuum Chamber on the Deposition of Cubic Boron Nitride Thin Film (진공조의 잔류산소가 입방정질화붕소 박막 합성에 미치는 영향)

  • Oh, Seung-Keun;Kim, Youngman
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.139-144
    • /
    • 2013
  • c-BN(cubic boron nitride) is known to have extremely high hardness next to diamond, as well as very high thermal and chemical stability. The c-BN in the form of film is useful for wear resistant coatings where the application of diamond film is restricted. However, there is less practical application because of difficult control of processing variables for synthesis of c-BN film as well as unclear mechanism on formation of c-BN. Therefore, in the present study, the structural characterization of c-BN thin film were investigated using $B_4C$ target in r.f. magnetron sputtering system as a function of processing variables. c-BN films were coated on Si(100) substrate using $B_4C$ (99.5% purity). The mixture of nitrogen and argon was used for carrier gas. The deposition processing conditions were changed with substrate bias voltage, substrate temperature and base pressure. Fourier transform infrared microscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze crystal structures and chemical binding energy of the films. In the case of the BN film deposited at room temperature, c-BN was formed in the substrate bias voltage range of -400 V~ -600 V. Less c-BN fraction was observed as deposition temperature increased and more c-BN fraction was observed as base pressure increased.

Stability and Adhesion of Diamond-like Carbon Film under Micro-tensile Test Condition (미소 인장시험을 통한 다이아몬드상 카본 박막의 안정성 및 접합력 평가)

  • Choi Heon Woong;Lee Kwang-Ryeol;Wang Rizhi;Oh Kyu Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.175-181
    • /
    • 2004
  • We investigated the stability of the DLC film coated on 304 stainless steel substrate by Radio frequency assisted chemical vapor deposition method. Fracture and spallation behaviour of the coating was observed during micro-tensile test of the fil $m_strate composite. As the tensile deformation progressed, the cracks of the film were observed in the perpendicular direction to the tensile axis. Further deformation resulted in the plastic deformation with $45^{\circ}$ slip bands on the substrate surface. Spallation of the film occurred with the plastic deformation, which was initiated at the cracks of the film and was aligned along the slip directions. We found that both the cracking and the spallation behaviors are strongly dependent on the pre-treatment condition, such as Ar plasma pre-treatment. The spallation of the film was considerably suppressed in an optimized condition of the substrate cleaning by Ar glow discharge. We observed the improved stability with increasing duration of Ar plasma pre-treatment.nt.

Growth of Nanocrystalline Diamond on W and Ti Films (W 및 Ti 박막 위에서 나노결정질 다이아몬드의 성장 거동)

  • Park, Dong-Bae;Myung, Jae-Woo;Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.145-152
    • /
    • 2013
  • The growth behavior of nanocrystalline diamond (NCD) film has been studied for three different substrates, i.e. bare Si wafer, 1 ${\mu}m$ thick W and Ti films deposited on Si wafer by DC sputter. The surface roughness values of the substrates measured by AFM were Si < W < Ti. After ultrasonic seeding treatment using nanometer sized diamond powder, surface roughness remained as Si < W < Ti. The contact angles of the substrates were Si ($56^{\circ}$) > W ($31^{\circ}$) > Ti ($0^{\circ}$). During deposition in the microwave plasma CVD system, NCD particles were formed and evolved to film. For the first 0.5h, the values of NCD particle density were measured as Si < W < Ti. Since the energy barrier for heterogeneous nucleation is proportional to the contact angle of the substrate, the initial nucleus or particle densities are believed to be Si < W < Ti. Meanwhile, the NCD growth rate up to 2 h was W > Si > Ti. In the case of W substrate, NCD particles were coalesced and evolved to the film in the short time of 0.5 h, which could be attributed to the fact that the diffusion of carbon species on W substrate was fast. The slower diffusion of carbon on Si substrate is believed to be the reason for slower film growth than on W substrate. The surface of Ti substrate was observed as a vertically aligned needle shape. The NCD particle formed on the top of a Ti needle should be coalesced with the particle on the nearby needle by carbon diffusion. In this case, the diffusion length is longer than that of Si or W substrate which shows a relatively flat surface. This results in a slow growth rate of NCD on Ti substrate. As deposition time is prolonged, NCD particles grow with carbon species attached from the plasma and coalesce with nearby particles, leaving many voids in NCD/Ti interface. The low adhesion of NCD films on Ti substrate is related to the void structure of NCD/Ti interface.

Improvement of Adhesion Strength of DLC Films on Nitrided Layer Prepared by Linear Ion Source

  • Shin, Chang-Seouk;Kim, Wang-Ryeol;Park, Min-Seok;Jung, Uoo-Chang;Chung, Won-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.177-179
    • /
    • 2011
  • The purpose of this study is to enhance an adhesion between substrate and Diamond-like Carbon (DLC) film. DLC has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion because of weak bonding between DLC film and the substrate. For improvement adhesion, a layer between DLC film and the substrate was prepared by dual post plasma. DLC film was deposited on nitrided layer by linear ion source. The composed compound layer between substrate and DLC film was investigated by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The synthesized bonding structure of DLC film was analyzed using a micro raman spectrometer. Mechanical properties were measured by nano-indentation. In order to clarify the mechanism for improvement in adhesive strength, it was observed by scratch test.

  • PDF