• 제목/요약/키워드: Diagonal Model

검색결과 254건 처리시간 0.027초

반복 횡하중을 받는 철근콘크리트 전단벽의 비선형 해석 (Nonlinear Analysis of Cyclic Lateral Forced RC Shear Wall)

  • 김건우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권5호
    • /
    • pp.161-168
    • /
    • 2010
  • 실무 및 연구에 있어서 반복하중을 받는 콘크리트 벽체의 변형 및 저항능력 그리고 재료의 변형율 등을 정확하게 평가할 수 있는 방법이 필요하다. 따라서 본 논문에서는 비선형 트러스 부재를 이용하여 반복 횡하중을 받는 철근콘크리트 벽체 또는 철근콘크리트 면부재를 모델링 하였다. 콘크리트와 배근된 철근은 각각 수직, 수평 그리고 대각선 비선형 부재를 이용해 모델링 되었다. 본 논문에서는 높이/폭 비가 1.2인 벽체를 예제로 선택하여 실험의 결과와 비교하였다. 비교를 위하여 주대각선 부재의 경로에 따른 4가지의 형상과 대각선 부재들의 배열에 따른 3가지 형상이 채택되어 실험 결과와 가장 근사한 모델링의 선택을 위해 평가를 실시하였다.

3차원 데토네이션 파의 수평 및 대각선 모드 파면 구조 (Transverse and Diagonal Mode Structures of Three-dimensional Detonation Wave)

  • 조덕래;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.343-346
    • /
    • 2005
  • 전산 해석과 병렬처리를 이용하여 정사각 관 내부를 전파하는 데토네이션파의 삼차원 구조를 살펴보았다. 가변 비열비 공식과 간략화 된 일단계 Arrhenius 반응 모델과 연계된 비점성 유체 방정식을 MUSCL 기반 TVD 해법과 4단계 Runge-Kutta 적분 방법을 이용하여 해석하였다. 삼차원에서의 비정상 해석 결과로부터 그을음 막 기록(smoked-foil record)에서 같은 길이와 다른 폭을 가지는 수평 및 대각 방향 불안정에 의한 상세한 파면 구조를 파악할 수 있었다.

  • PDF

유연생산시스템(FMS)에서의 기계-부품그룹 형성기법 (Machine-part Group Formation Methodology for Flexible Manufacturing Systems)

  • 노인규;권혁천
    • 대한산업공학회지
    • /
    • 제17권1호
    • /
    • pp.75-82
    • /
    • 1991
  • This research is concerned with Machine-Part Group Formation(MPGF) methodology for Flexible Manufacturing Systems(FMS). The purpose of the research is to develop a new heuristic algorithm for effectively solving MPGF problem. The new algorithm is proposed and evaluated by 100 machine-part incidence matrices generated. The performance measures are (1) grouping ability of mutually exclusive block-diagonal form. (2) number of unit group and exceptional elements, and (3) grouping time. The new heuristic algorithm has the following characteristics to effectively conduct MPGF : (a) The mathematical model is presented for rapid forming the proper number of unit groups and grouping mutually exclusive block-diagonal form, (b) The simple and effective mathematical analysis method of Rank Order Clustering(ROC) algorithm is applied to minimize intra-group journeys in each group and exceptional elements in the whole group. The results are compared with those from Expert System(ES) algorithm and ROC algorithm. The results show that the new algorithm always gives the group of mutually exclusive block-diagonal form and better results(85%) than ES algorithm and ROC algorithm.

  • PDF

Mixed $\textrm{H}_2/\textrm{H}_\infty$ Robust Control with Diagonal Structured Uncertainty

  • Bambang, Riyanto;Uchida, Kenko;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.575-580
    • /
    • 1992
  • Mixed H$_{2}$/H$_{\infty}$ robust control synthesis is considered for finite dimensional linear time-invariant systems under the presence of diagonal structured uncertainties. Such uncertainties arise for instance when there is real perturbation in the nominal model of the state space system or when modeling multiple (unstructured) uncertainty at different locations in the feedback loop. This synthesis problem is reduced to convex optimization problem over a bounded subset of matrices as well as diagonal matrix having certain structure. For computational purpose, this convex optimization problem is further reduced into Generalized Eigenvalue Minimization Problem where a powerful algorithm based on interior point method has been recently developed..

  • PDF

Experiments and numerical analyses for composite RC-EPS slabs

  • Skarzynski, L.;Marzec, I.;Tejchman, J.
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.689-704
    • /
    • 2017
  • The paper presents experimental and numerical investigations of prefabricated composite structural building reinforced concrete slabs with the insulating material for a residential building construction. The building slabs were composed of concrete and expanded polystyrene. In experiments, the slabs in the full-scale 1:1 were subjected to vertical concentrated loads and failed along a diagonal shear crack. The experiments were numerically evaluated using the finite element method based on two different constitutive continuum models for concrete. First, an elasto-plastic model with the Drucker-Prager criterion defined in compression and with the Rankine criterion defined in tension was used. Second, a coupled elasto-plastic-damage formulation based on the strain equivalence hypothesis was used. In order to describe strain localization in concrete, both models were enhanced in the softening regime by a characteristic length of micro-structure by means of a non-local theory. Attention was paid to the formation of critical diagonal shear crack which was a failure precursor.

횡보강근이 없는 콘크리트 부재의 전단강도 (Shear Strength of Concrete Members without Transverse Steel)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

Necessary and Sufficient Conditions for the Existence of Decoupling Controllers in the Generalized Plant Model

  • Park, Ki-Heon;Choi, Goon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.706-712
    • /
    • 2011
  • Necessary and sufficient conditions for the existence of diagonal, block-diagonal, and triangular decoupling controllers in linear multivariable systems for the most general setting are presented. The plant model in this study is sufficiently general to accommodate non-square plant and non-unity feedback cases with one-degree-of-freedom (1DOF) or two-degree-of-freedom (2DOF) controller configuration. The existence condition is described in terms of rank conditions on the coefficient matrices in partial fraction expansions.

골유착 고정성 보철물 하에서 하중조건에 따른 삼차원 유한요소법적 분석 (THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE BONE ANCHORED FIXED PROSTHESIS ACCORDING TO THE LOAD CONDITION)

  • 양순익;정재헌
    • 대한치과보철학회지
    • /
    • 제33권4호
    • /
    • pp.780-806
    • /
    • 1995
  • The purpose of this study was to describe the application of 3D finite element analysis to determine resultant stresses on the bone anchored fixed prosthesis, implants and supporting bone of the mandible according to fixture numbers and load conditions. 4 or 6 fixtures and the bone anchored fixed prosthesis were placed in 3D finite element mandibular arch model which represents an actual mandibular skull. A $45^{\circ}$ diagonal load of 10㎏ was labiolingually applied in the center of the prosthesis(P1). A $45^{\circ}$ diagonal load of 20㎏ was buccolingually applied at the location of the 10mm or 20mm cantilever posterior to the most distal implant(P2 or P3). The vertical distribution loads were applied to the superior surfaces of both the right and the left 20mm cantilevers(P4). In order that the boundary conditions of the structure were located to the mandibular ramus and angle, the distal bone plane was to totally fixed to prevent rigid body motion of the entire model. 3D finite element analysis was perfomed for stress distribution and deflection on implants and supporting bone using commercial software(ABAQUS program. for Sun-SPARC Workstation. The results were as follows : 1. In all conditions of load, the hightest tensile stresses were observed at the metal lates of prostheses. 2. The higher tensile stresses were observed at the diagonal loads rather than the vertical loads 3. 6-implants cases were more stable than 4-implants cases for decreasing bending and torque under diagonal load on the anterior of prosthesis. 4. From a biomechanical perspective, high stress developed at the metal plate of cantilever-to-the most distal implant junctions as a consequence of loads applied to the cantilever extension. 5. Under diagonal load on cantilever extension, the 6-implants cases had a tendency to reduce displacement and to increase the reaction force of supporting point due to increasing the bendign stiffness of the prosthesis than 4-implants cases. 6. Under diagonal load on cantilever extension, the case of 10mm long cantilever was more stable than that of 20mm long cnatilever in respect of stress distribution and displacement. 7. When the ends of 10mm or 20mm long cantilever were loaded, the higher tensile stress was observed at the second most distal implant rather than the first most distal implant. 8. The 6-implants cases were more favorable about prevention of screw loosening under repeated loadings because 6-implants cases had smaller deformation and 4-implants cases had larger deformation.

  • PDF

균열모델을 사용한 철근콘크리트 구조물의 비선형거동 해석에 관한 연구 (A Study on Nonlinear Behavior of RC Structure using Different Crack Models)

  • 김성칠;안영기;박성용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.139-146
    • /
    • 2002
  • A analysis of crack behavior in RC member was performed by nonlinear finite element method. Two crack models were used in F.E.M.(finite element method): one was FCM (the fixed crack model) and the other was RCM (the rotated crack model). Based on parametric study, the ratio of shear steel, strength of concrete, and a/d(shear span/effective depth) were compared with test results of references. According to the test results, when the member behavior was affected by the shear or diagonal tension, RCM was reasonable. However, when the behavior was affected by the flexibility, FCM was more appropriate. In addition, each crack model behavior for the change of shear steel ratio, the increase of strain energy was constant in FCM, but it was different in RCM because of diagonal crack distribution and crack width. Since the strength of concrete is affected not only by shear but also by flexural strength, each crack model behavior yields similar results.