• Title/Summary/Keyword: Diagonal Crack

Search Result 99, Processing Time 0.034 seconds

Development of an algorithm for crack pattern recognition (균열 패턴인식 알고리즘 개발)

  • Lee Bang Yeon;Kim Yun-Yong;Kim Jin-Keun;Park Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.716-719
    • /
    • 2004
  • This study proposes an algorithm for recognition of crack patterns, which includes horizontal, vertical, diagonal$(-45^{\circ})$, diagonal$(+45^{\circ})$, and random cracks, based on image processing technique and artificial neural network. A MATLAB code was developed for the proposed algorithm, and then numerical tests were performed on thirty-eight crack images to examine validity of the algorithm. Within the limited tests in the present study, the proposed algorithm was revealed as accurately recognizing the crack patterns when compared to those classified by a human expert.

  • PDF

Shear Strength of Concrete Members without Transverse Steel (횡보강근이 없는 콘크리트 부재의 전단강도)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

Micro-crack Detection in Polycrystalline Solar Cells using Improved Anisotropic Diffusion Model (개선된 비등방 확산 모델을 이용한 다결정형 솔라셀의 마이크로 크랙 검출)

  • Ko, JinSeok;Rheem, JaeYeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.183-190
    • /
    • 2013
  • In this paper, we propose an improved anisotropic diffusion model for micro-crack detection in heterogeneously textured surface of polycrystalline solar wafers. Due to the nature of the image sensor, the gray-level of the diagonal micro-crack is non-uniform. Thus, the conventional algorithms can't fully detect diagonal micro-cracks when the number of iteration is not enough. However, the increasing of the iteration number leads to increase computation time and detects micro-crack thicker than the original micro-crack. In order to overcome this drawback, we use the gradient of north, south, east, and west directions as well as extended directions. To calculate the diffusion coefficients, we compare the gradients of conventional directions and extended directions and apply the larger gradient values to the coefficient function. This is because the proposed method reflects the information of diagonal micro-crack. Comparing to Tsai et al.'s and Ko and Rheem's, the proposed algorithm shows superior efficiency in detecting the diagonal micro-cracks with less iterations in the images of polycrystalline solar wafers. In addition, it also shows that the thickness of segmented micro-crack is similar to the orignal micro-crack.

Experimental Study on the Material Properties of Unreinforced Masonry (비보강 조적조의 재료특성 평가에 관한 실험연구)

  • 박진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.178-185
    • /
    • 2000
  • A set of tests were accomplished in order to get better insight of the basic material properties of masonry made of normal concrete brick and different type of mortar compositions. Three different types of test were performed. Masonry unit and prism were tested by compressive strength test, Masonry wallets were tested by compressive strength test. Masonry wallets were tested in diagonally under tension. A significant influence of different mortar compositions on compression strength of masonry prism was observed, The tests have shown that for diagonal compression three different mode of failure were possible : tension crack along the loaded diagonal sliding along a mortar joint and combined sliding and diagonal crack according to the adhesive strength of a mortar.

  • PDF

Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

Shear Mechanism of Steel-Fiber Reinforced High Strength Concrete Beams without Shear Reinforcement (전단 보강이 없는 고강도 섬유보강 철근 콘크리트보의 전단 역학적 거동에 관한 연구)

  • 오정근;이광수;권영호;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.51-56
    • /
    • 1990
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams subjected to predominant shear are accomplished to determine their diagonal shear strength including ultimate shear strength. The parameters varied were the volume fraction(Vf) of the fibers, shear span depth ratio(a/d). The test result show that diagonal shear strength and ultimate shear strength are increased siginificantly due to crack arrest mechanism. Predictive equations are suggested for evaluating the diagonal cracking strength and ultimate shear strength of the fiber reinforced high strength concrete beams.

  • PDF

A Technique for Pattern Recognition of Concrete Surface Cracks (콘크리트 표면 균열 패턴인식 기법 개발)

  • Lee Bang-Yeon;Park Yon-Dong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.369-374
    • /
    • 2005
  • This study proposes a technique for the recognition of crack patterns, which includes horizontal, vertical, diagonal($-45^{\circ}$), diagonal($+45^{\circ}$), and random cracks, based on image processing technique and artificial neural network. A MATLAB code was developed for the proposed image processing algorithm and artificial neural network. Features were determined using total projection technique, and the structure(no. of layers and hidden neurons) and weight of artificial neural network were determined by learning from artificial crack images. In this process, we adopted Bayesian regularization technique as a generalization method to eliminate overfitting Problem. Numerical tests were performed on thirty-eight crack images to examine validity of the algorithm. Within the limited tests in the present study, the proposed algorithm was revealed as accurately recognizing the crack patterns when compared to those classified by a human expert.

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Evaluation of the Shear Strength Component by Circular Transverse Reinforcement in Reinforced Concrete Columns (철근콘크리트 기둥에서 원형전단철근에 의한 전단강도 산정)

  • 하태훈;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.982-988
    • /
    • 2002
  • Current design equations for shear strength of reinforced concrete columns generally overestimate the shear strength contribution by the circular transverse reinforcement. This is due to the simplification of the discrete distribution of the reinforcement to the continuous one and the imprudent application of the classical truss model to the circular section, which is different in shear-resisting mechanism from the rectangular section. This study presents a rational model for the prediction of shear strength contribution by the circular transverse reinforcement considering the starting location of a diagonal crack, the number of transverse reinforcing bars crossing the main crack and the geometrical strength component of the transverse resistance. It was found that, for lower amount transverse reinforcement, the crack starting point and the number of crack crossing bars greatly influence the shear-resisting capacity. Proposed model leads to a reliable design equation which is derived using a linear regression method and is in good agreement with the lower bound of exact strength curve.

A Study on Theoretical Analysis for Reinforced Concrete Transfer Girder of Hybrid Structures (복합구조의 철근콘크리트 전이보에 대한 이론적 해석 연구)

  • 권기혁;이춘호;김민수;이한선;고동우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.623-628
    • /
    • 2000
  • In this paper, the behavior for transfer girder of the upper-wall and lower-frame structures was studied by the nonlinear finite element analysis. It was analyzed and compared with the experimental results. Analysis results showed that failure modes were progressed by a initial diagonal crack in the shear span between the edges of the load and intermediate support plate. The nonlinear finite element analysis could predict deformation, principal stress, ultimate load and concrete crack. Also analysis results showed good agreement the test results.

  • PDF