• Title/Summary/Keyword: Diagnostic sensor

Search Result 239, Processing Time 0.028 seconds

Development of Reflection-type Fiber-optic pH Sensor Using Sol-gel Film (졸-겔 필름을 이용한 반사형 광섬유 pH 센서의 개발)

  • Yoo, Wook-Jae;Seo, Jeong-Ki;Jang, Kyoung-Won;Moon, Jin-Soo;Han, Ki-Tek;Park, Jang-Yeon;Lee, Bong-Soo;Cho, Seung-Hyun;Heo, Ji-Yeon;Park, Byung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.266-271
    • /
    • 2011
  • A reflection-type fiber-optic pH sensor, which is composed of a pH sol-gel film, plastic optical fibers, a mirror, a light source and a spectrometer, is developed in this study. As pH indicators, a bromthymol blue, a cresol red and a thymol blue are used, and they are immobilized in the sol-gel films. The emitted light from a light source is guided by a fiber-optic Y-coupler and plastic optical fibers to the pH sol-gel film in a pH sensing probe. The pH change in the sensing probe gives rise to a change in the color of the pH sol-gel film, and the optical characteristic of reflected light through the pH sol-gel film is also changed. Therefore, we have measured the spectra of reflected lights, which are changed according to the color variations of the pH sol-gel films with different pH values, by using of a spectrometer. Also, the relationships between the pH values and the intensities of reflected lights are obtained on the basis of the color variations of the pH sol-gel films.

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor (자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구)

  • Hyun-Seung Cho;Jin-Hee Yang;Sang-Yeob Lee;Jeong-Whan Lee;Joo-Hyeon Lee;Hoon Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study

  • Park, Jin-Young;Chung, Jung-Ho;Lee, Jung-Seok;Kim, Hee-Jin;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • Purpose: Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods: Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results: The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2-1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions: Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications.

Design of FPGA-based Wearable System for Checking Patients (환자 체크를 위한 FPGA 기반 웨어러블 시스템 설계)

  • Kang, Sungwoo;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.477-479
    • /
    • 2017
  • With the recent advances in medical technology and health care, the prevention and treatment of diseases has developed. Accordingly aging has rapidly progressed. In this life span and aging society, demand for diagnostic centered medical care is increasing rapidly. In this paper, we propose a wearable patient check system based on FPGA that can be controlled by sensors. In the existing hospital, a doctor or nurse visited the patient every hour to check the condition. However, in this paper, patients, doctors and nurses can check the patient's condition at the desired time using patient check system. In addition, the tilt sensor is used for the patient who is uncomfortable to easily control. The proposed FPGA-based hardware architecture consists of an algorithm for enlarged image processing, a TFT-LCD Controller, a CIS Controller, and a Memory Controller to output the patient's status image. Implemented and validated using the DE2-115 test board with Cyclone IV EP4CE115F29C7 FPGA device and its operating frequency is 50MHz.

  • PDF

Design and Implementation of Psychological Diagnosis Expert System based on the SandTray (모래 상자 놀이 기반 심리 진단 전문가 시스템 설계 및 구현)

  • Son, Se-Jin;Lee, Kang-Hee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.235-244
    • /
    • 2017
  • This paper aims to design a system for psychological diagnosis in sandbox play by applying rule based expert system. Sandbox play is one of play therapy and it is a technique that can be combined with psychological diagnosis and treatment using sand and various kinds of figures. In this technique, we focus on psychological diagnostic factors and try to implement a system that automatically diagnoses psychological types when input values are given. Therefore, six kinds of language objects are set and the rules are created according to the types of figures, arrangement of figures, and production time in the sand box used as a reference element in the diagnosis method. In this system, it is assumed that the client recognizes the finished sandbox as a sensor device. Then, when the recognized state enters the input value, the rules based on the language object are ignited in order. Through this, the client is diagnosed with one of 26 types of psychology. As a result, the diagnostic process is simplified and automated. Accordingly, a more detailed psychological diagnosis and treatments are provided.

An Architecture for Managing Faulty Sensing Data on Low Cost Sensing Devices over Manufacturing Equipments (전문 설비의 이상신호 처리를 위한 저비용 관제 시스템 구축)

  • Chae, Yuna;Kim, Changi;Ko, Haram;Kim, Woongsup
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.113-120
    • /
    • 2018
  • In this study, we proposed a monitoring system for identifying and handling faulty sensing stream data on manufacturing equipments where low-cost sensors can be safely used. Low cost sensors will lessen the cost of implementing distributed monitoring system, but suffer from sensor noises and inaccurate sensed data. Therefore, a distributed monitoring system with low cost sensors should identify faulty signal data as either of sensor fault or machine fault, and filter out faulty signals from sensing fault. To this end, we adopted a fourier transform based diagnostic approach mixed with a weighed moving averaging method, in order to identify faulty signals. We measured how effective our approach is and found out our approach can filter out one-third faulty signals from our experimental environment. In addition, we attached wireless communication modules to reduce sensor and network installation cost. To handle massive sensor data efficiently, we employed unstructured data format with NoSQL based database.

Development of Micro Wired pH Electrode for Real-Time Monitoring for Gastroesophageal Reflux (위식도 역류 실시간 모니터링 마이크로 와이어 pH 전극 개발)

  • Kim, Eung-Bo;Lee, Kyu-Jin;So, Sang-Kyun;Joung, Yeun-Ho;Park, Jung Ho;Kim, Nam Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.277-284
    • /
    • 2017
  • This paper presents an implantable pH measurement electrode for wireless gastroesophageal reflux measurement. Usually, gastroesophageal reflux is diagnosed by a catheter-type wire connection between the esophagus and the diagnostic device which brings many side effects such as restriction of daily living, pain, and discomfort in the nasal cavity and pharynx of patients. In order to solve these issues, researchers have been studied a wireless measurement method and a micro-sized pH electrode for human body insertion is necessary. Commercial glass packaged pH meter is formed by a sensing and a reference electrodes in a KCl solution. However, if the glass meter is inserted into the human body, there are risks of leakage of the solution, breakage of the glass package, injury of the body elements. Therefore, the solution should be solidified on the micro-sized noble metal wire which has a characteristic of biocompatible. After solidified wire fabrication, the designed meter was tested for feasibility of measurement and the result was well agreed with pH values of commercial pH meter. Potentials in pH 1 to 12 solution was measured to obtain the sensitivity of the sensor with linearity. And we have designed a simulation of gastroesophageal reflux with symptom frequency, interval, and duration time in pH 2 solution. The proposed sensor has capable to get the same potential for 24 measurements in 3 days, and it has sensed same pH values of 2 for one hour with every 10 minutes. Furthermore, the sensor was survived for 48 hours with reasonable potentials in the acid solution.

A portable electronic nose (E-Nose) system using PDA device (개인 휴대 단말기 (PDA)를 기반으로 한 휴대용 E-Nose의 개발)

  • Yang, Yoon-Seok;Kim, Yong-Shin;Ha, Seung-Chul;Kim, Yong-Jun;Cho, Seong-Mok;Pyo, Hyeon-Bong;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • The electronic nose (e-nose) has been used in food industry and quality controls in plastic packaging. Recently it finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. Moreover, the use of portable e-nose enables the on-site measurements and analysis of vapors without extra gas-sampling units. This is expected to widen the application of the e-nose in various fields including point-of-care-test or e-health. In this study, a PDA-based portable e-nose was developed using micro-machined gas sensor array and miniaturized electronic interfaces. The rich capacities of the PDA in its computing power and various interfaces are expected to provide the rapid and application specific development of the diagnostic devices, and easy connection to other facilities through information technology (IT) infra. For performance verification of the developed portable e-nose system, Six different vapors were measured using the system. Seven different carbon-black polymer composites were used for the sensor array. The results showed the reproducibility of the measured data and the distinguishable patterns between the vapor species. Additionally, the application of two typical pattern recognition algorithms verified the possibility of the automatic vapor recognition from the portable measurements. These validated the portable e-nose based on PDA developed in this study.

Clinical Study on the Sasang Constitutional Pulse Using Array Piezoresistive Sensor (어레이 압저항 센서를 활용한 체질맥 임상연구)

  • Lee, Si-Woo;Joo, Jong-Cheon;Kim, Kyung-Yo;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.1
    • /
    • pp.118-131
    • /
    • 2006
  • 1. Objective Pulse diagnosis is generally applied to Traditional Oriental Medicine but not to Sasang Constitution diagnosis. Recently new pulse analyzer using array piezoresistive sensor and multi-channel robot arm developed. It reflects Oriental Medical Doctors' diagnostic processes, and its reproducibility test was done at Korea Institute of Oriental Medicine. We performed this study to set parameters diagnosing Sasang Constitution. 2. Methods One hundred thirty three subjects participated in this study. They are healty and approved this study. Before being tested with pulse analyzer, they had interview with Sasang Constitution Specialist to diagnose their Sasang Constitution. We established some useful parameters from parameters of pulse analyzer according to the Original Texts of Oriental Medicine and clinical experiences to analyze with clinical data of this study. 3. Results (I) There is a significant difference in pre-dicrotic notch time among all parameters of pulse analyzer in Sasang Constitution groups(P=0.047). (2) There is a significant difference in maximum pulse pressure in 33 to 48 year Sasang Constitution groups(P=0.010). (3) There is a significant difference in frequency width in 17 to 32 year Sasang Constitution groups(P=0.002). (4) There is a significant difference in CFS value in groups which OMD diagnoses; Floating & Sinking pulse(P=0.020). (5) There is a significant difference in pulse rate in groups which OMD diagnoses; Rapid & Slow pulse(P=0.000). (6) There is a significant difference in maximum pulse pressure in groups which OMD diagnoses; Deficient & Solid pulse(P=0.000). 4. Conclusions Analyzing parameters in each Sasang Constitution group, we found it shows significant difference in maximum pulse pressure and corresponding tendency in coefficient of floating & sinking pulse with theories of Sasang Consti-tutional Medicine. As we accumulate more clinical data, we will establish algorithm to diagnose Sasang Constitution using a pulse analyzer.

  • PDF