• Title/Summary/Keyword: Diagnosis Model

Search Result 1,733, Processing Time 0.03 seconds

A Operating Status Diagnosis of DC/DC Converter by System Identification (System Identification Method를 이용한 DC/DC 컨버터 상태진단)

  • Kim, Cheul-U;Kim, Tae-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.724-729
    • /
    • 2007
  • In this paper, we propose a new diagnosis method of DC/DC converter aging. The method is based on variations of the parasitic resistor for the aging process. We apply an on-line diagnosis of the DC/DC converter because the observation is not a device, but a system. This study proposes a method of DC/DC converter diagnosis by analyzing the variations of model on the variations of parasitic resistor.

Combining a HMM with a Genetic Algorithm for the Fault Diagnosis of Photovoltaic Inverters

  • Zheng, Hong;Wang, Ruoyin;Xu, Wencheng;Wang, Yifan;Zhu, Wen
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1014-1026
    • /
    • 2017
  • The traditional fault diagnosis method for photovoltaic (PV) inverters has a difficult time meeting the requirements of the current complex systems. Its main weakness lies in the study of nonlinear systems. In addition, its diagnosis time is long and its accuracy is low. To solve these problems, a hidden Markov model (HMM) is used that has unique advantages in terms of its training model and its recognition for diagnosing faults. However, the initial value of the HMM has a great influence on the model, and it is possible to achieve a local minimum in the training process. Therefore, a genetic algorithm is used to optimize the initial value and to achieve global optimization. In this paper, the HMM is combined with a genetic algorithm (GHMM) for PV inverter fault diagnosis. First Matlab is used to implement the genetic algorithm and to determine the optimal HMM initial value. Then a Baum-Welch algorithm is used for iterative training. Finally, a Viterbi algorithm is used for fault identification. Experimental results show that the correct PV inverter fault recognition rate by the HMM is about 10% higher than that of traditional methods. Using the GHMM, the correct recognition rate is further increased by approximately 13%, and the diagnosis time is greatly reduced. Therefore, the GHMM is faster and more accurate in diagnosing PV inverter faults.

Design of Class and Causality Model for Diagnosis System of an Emergency Generator in Nuclear Plant (원전 비상 발전기의 고장진단시스템을 위한 클래스 및 인과관계 모형 설계)

  • Ha, Chang-Seung;Part, Jong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • The construction of an emergency generator's diagnosis system for the preparation of emergency in nuclear plant is vital. To construct a knowledge base of the diagnosis system, the classes and a causality model should be designed. In order to design those elements, at first. object of the diagnosis system should be defined. After the investigation of normal and abnormal states. the external knowledge such as entities and activities is extracted, that the operational principle of the system. For the conversion of the extracted external knowledge to the internal one, the entities are defined as classes and the activities converted into the causality. Through the recursive configuration of the causality and proper examination, the diagnosis knowledge applicable to the knowledge base is completed. In this paper, it is possible to construct a knowledge base with high portability since the independence of design model is considered through the decision table.

  • PDF

Abnormality diagnosis model for nuclear power plants using two-stage gated recurrent units

  • Kim, Jae Min;Lee, Gyumin;Lee, Changyong;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2009-2016
    • /
    • 2020
  • A nuclear power plant is a large complex system with tens of thousands of components. To ensure plant safety, the early and accurate diagnosis of abnormal situations is an important factor. To prevent misdiagnosis, operating procedures provide the anticipated symptoms of abnormal situations. While the more severe emergency situations total less than ten cases and can be diagnosed by dozens of key plant parameters, abnormal situations on the other hand include hundreds of cases and a multitude of parameters that should be considered for diagnosis. The tasks required of operators to select the appropriate operating procedure by monitoring large amounts of information within a limited amount of time can burden operators. This paper aims to develop a system that can, in a short time and with high accuracy, select the appropriate operating procedure and sub-procedure in an abnormal situation. Correspondingly, the proposed model has two levels of prediction to determine the procedure level and the detailed cause of an event. Simulations were conducted to evaluate the developed model, with results demonstrating high levels of performance. The model is expected to reduce the workload of operators in abnormal situations by providing the appropriate procedure to ultimately improve plant safety.

A Computer Aided Diagnosis Algorithm for Classification of Malignant Melanoma based on Deep Learning (딥 러닝 기반의 악성흑색종 분류를 위한 컴퓨터 보조진단 알고리즘)

  • Lim, Sangheon;Lee, Myungsuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.

Modular Failure Diagnosis for Discrete Event Systems

  • Kim, Hee-Pyo;Park, Joon-Hyo;Lee, Dong-Hoon;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.1-96
    • /
    • 2002
  • $\textbullet$ Abstract $\textbullet$ Introduction $\textbullet$ Building a Model for Diagnosis $\textbullet$ Modular Approach to Diagnosis $\textbullet$ Extension to a General Case $\textbullet$ Conclusion $\textbullet$ References

  • PDF

Development of a New Instrument to Measuring Concerns for Corporate Information Privacy Management (국내 기업개인정보보호 측정항목과 관리모형 개발에 관한 연구)

  • Lee, Sung-Joong;Lee, Young-Jai
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.4
    • /
    • pp.79-92
    • /
    • 2009
  • With the rising reliance on market estimation through customer analysis in customer-centered marketing, there is a rapid increase in the amount of personal data owned by corporations. There has been a corresponding rise in the customers' interest in personal information protection, and the problem of personal information leakage has risen as a serious issue. The purpose of this research is to develop a diagnosis model for personal information protection that is suited to our country's corporate environment, and on this basis, to present diagnostic instruments that can be applied to domestic corporations. This diagnosis model is a structural equation model that schematizes the degree of synthetic effect that administration factors and estimation items have on the protection of personal information owned by corporations. We develop the model- consisting of the administration factors for personal information protection and the measurement items of each factor- using the development method of standardized structural equation model. We then present a tool through which the administration factors and estimation items verified through this model can be used in the diagnosis for personal information protection in corporations. This diagnostic tool can be utilized as a useful instrument to prevent in advance the leakage of personal information in corporations.

  • PDF

A Study on the Quantitative Diagnosis Model of Personal Color (퍼스널컬러의 정량적 진단 모델 연구)

  • Jung, Yun-Seok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.277-287
    • /
    • 2021
  • The purpose of this study is to establish a model that can quantitatively diagnose personal color. Representative color systems for personal colors have limitations in that it oversimplify personal color diagnosis types or it is difficult to distinguish objective differences between diagnosis types. To develop a brand new color system that enhances this, a PCCS color system capable of logical color was introduced and reclassified based on the four main properties of color. Twenty diagnostic types, which are more diverse than the existing color system were proposed and a quantitative method was used to evaluate the degree of harmony with a subject to find an optimized type of subject. The experimenter's individual competency and subjective intervention were minimized by devising a matrix in which a type suitable for the subject is derived when the coded evaluation result is substituted. Finally a quantitative diagnosis model of personal color consisting of three stages: property diagnosis, coding, and seasonal diagnosis was constructed. It can be seen that this will give diversity, reliability, and accuracy to the existing diagnostic methods.