• Title/Summary/Keyword: Diacrylate

Search Result 71, Processing Time 0.021 seconds

Thermal Insulation Property of UV Cure Coatings Using Hollow Micro-Spheres (마이크로 중공구를 이용한 자외선 경화 코팅 박막의 단열 특성)

  • Kim, Nam Yi;Chang, Young-Wook;Kim, Seong Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.621-626
    • /
    • 2012
  • In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hollow micro-spheres with high heat transfer resistance. The UV curable resin system consisting of hexa aliphatic urethane acrylate (UP118), trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), and photoinitiator (Irgacure184) was employed as an organic binder. The glass substrates were coated by the prepared composites via bar coating method and cured under UV radiation. The optical transparency, thermal insulation property, adhesion, and surface hardness of the glass coated with composites containing different type of micro-spheres were investigated. The incorporation of micro-spheres with only 20 vol% of content resulted in remarkable improvement in the thermal insulation property of the coated glass. In addition, the transparent coated glass with light transmittance of about 80% could be obtained when silica micro-sphere (SP) was used as a thermal barrier.

Preparation of UV-Curable Organic-Inorganic Hybrid Hard Coating Films Using Alumina Sols and Acrylate Monomers (알루미나 졸과 아크릴레이트 단량체를 이용한 UV경화형 유-무기 하이브리드 하드코팅 막 제조)

  • Hwang, Ji-Hyeon;Song, Ki-Chang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.277-284
    • /
    • 2011
  • In this study, UV-curing type organic - inorganic hybrid hard coating solutions were prepared from alumina sols and acrylate monomers. The mixture of alumina sols, prepared from aluminum isopropoxide, and a silane coupling agent, methacryloxypropyl trimethoxysilane(MPTMS), was used as an inorganic component. Also, the mixture of acrylate monomers, pentaerythritol triacrylate(PETA), 1,6-hexanediol diacrylate(HDDA) and dipentaerythritol hexaacrylate (DPEHA), was used as an organic component. The organic-inorganic hybrid coating solutions were obtained by mixing the inorganic component and organic component, deposited on polycarbonate substrates by spin coating and densified by UV-curing. The effect of the amount of MPTMS in the inorganic component and the irradiation time during UV-curing was studied on the properties of coating films. As a result, when 0.20 mole of MPTMS was used, the pencil hardness of coated films showed an excellent pencil hardness of 3H and also exhibited a good abrasion resistance of 2% in haze.

A Study on the Preparation and Characterization of Gel Polymer Electrolyte from Poly(ethylene glycol) Diacrylate in Sonic Liquid (폴리(에틸렌 글리콜) 디아크릴레이트/이온성 액체 젤형 고분자전해질의 제조 및 특성 연구)

  • Shin Bora;Cho Mi Suk;Kim Dukjoon;Sim Sang Jun;Kim Ji-Heung;Lee Dong Hyun;Nam Jae-Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.216-220
    • /
    • 2005
  • A new type of polymer gel electrolyte was prepared from poly(ethylene glycol) diacrylate(PEGDA) and 1-butyl-3-methylimidazolium bis((trifluorornethyl) sulfonyl) amide$(BuMeIm^+Tf_2N^-)$ ionic liquid. The effect of the ionic liquid on ionic conductivity of the gel polymer electrolyte was investigated. It was observed that the gel polymer electrolyte having the ionic liquid exhibited higher ionic conductivity $(ca.\;10^{-3}S/cm)$ as well as electrochemical stability than that using organic solvent.

Photolithographic Fabrication of Poly(Ethylene Glycol) Microstructures for Hydrogel-based Microreactors and Spatially Addressed Microarrays

  • Baek, Taek-Jin;Kim, Nam-Hyun;Choo, Jae-Bum;Lee, Eun-Kyu;Seong, Gi-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1826-1832
    • /
    • 2007
  • We describe the fabrication of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microstructures with a high aspect ratio and the use of hydrogel microstructures containing the enzyme ${\beta}$-galactosidase (${\beta}$-Gal) or glucose oxidase (GOx)/horseradish peroxidase (HRP) as biosensing components for the simultaneous detection of multiple analytes. The diameters of the hydrogel microstructures were almost the same at the top and at the bottom, indicating that no differential curing occurred through the thickness of the hydrogel microstructure. Using the hydrogel microstructures as microreactors, ${\beta}$-Gal or GOx/HRP was trapped in the hydrogel array, and the time-dependent fluorescence intensities of the hydrogel array were investigated to determine the dynamic uptake of substrates into the PEG-DA hydrogel. The time required to reach steady-state fluorescence by glucose diffusing into the hydrogel and its enzymatic reactions with GOx and HRP was half the time required for resorufin ${\beta}$-D-galactopyranoside (RGB) when used as the substrate for ${\beta}$-Gal. Spatially addressed hydrogel microarrays containing different enzymes were micropatterned for the simultaneous detection of multiple analytes, and glucose and RGB solutions were incubated as substrates. These results indicate that there was no cross-talk between the ${\beta}$-Gal-immobilizing hydrogel micropatches and the GOx/HRP-immobilizing micropatches.

Preparation of Acrylic Pressure Sensitive Adhesives for Optical Applications and Their Adhesion Performance (광학용 아크릴 점착제 제조 및 점착특성에 관한 연구)

  • Baek, Seung-Suk;Jang, Se-Jung;Lee, Jong-Hoon;Kho, Dong-Han;Lee, Sang-Hoon;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • To prepare acrylic pressure sensitive adhesives (PSAs), quaternary copolymer syrups were photopolymerized from 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate as default constituents and isobornyl acrylate and tetrahydrofurfuryl acrylate (THFA) as variable constituents. After polymerization, 1,6-hexanediol diacrylate and photoinitiator were added and then crosslinked by UV-irradiation to prepare the PSAs. The characteristics of the syrup such as viscosity, molecular weight, and solid content were investigated. As increasing THFA contents, the relationship between molecular weight and solid content of the syrup was reciprocal. Also, the relationship between peel strength and surface energy of the PSAs showed the same tendency. All the PSA samples showed high transmittance (more than 92%), low haze (less than 1.0%) and low color-difference (less than 1.0).

Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique (Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작)

  • Park, Ji-Young;Gratton, Stephanie;Benjamin, Maynor;Lim, Jomg Sung;Desimone, Joseph
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.493-499
    • /
    • 2007
  • Polymeric hydrogel particles were fabricated to demonstrate the scale-up possibilities with the Particle Replication In Non-wetting Templates (PRINT) process. A permanently etched, specifically designed master was made on a silicon wafer using conventional photolithography, then reactive ion etching. The master and substrate were used repeatedly to make a large number of identical elastomeric perfluoropolyethers (PFPE) replica molds. The PFPE replica molds were used to fabricate and harvest individual, monodisperse micron-sized particles using the PRINT process. A water-soluble polymer adhesive was used as a sacrificial layer for harvesting particles. Particles were composed of biodegradable poly (ethylene glycol) diacrylate (PEG-diA), and aminoethylacrylate (AEM) and 2-acryloxyethyltrimethyl ammonium chloride (AETMAC) were added to them for improving the uptake of the cells. This study suggested PRINT used to produce the uniformed and shape specific biodegradable polymer is the effective technique for the non viral vector for the drug and the gene delivery.

Effect of Crosslinking Agent on Adhesion Properties of UV Curable 2-EHA/AA Pressure Sensitive Adhesive (UV경화형 2-EHA/AA 점착제의 점착특성에 대한 경화제의 영향)

  • Kim, Ho-Gyum;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.281-286
    • /
    • 2015
  • UV-cured acrylic copolymer pressure sensitive adhesive (PSA) having different amounts of crosslinking agents were prepared and adhesion properties were investigated. 0.01 wt% of MMT clay was dispersed in 2-ethylhexyl acrylate (2-EHA)/acrylic acid (AA) monomer mixture containing 0, 0.05, 0.1 and 0.3 wt% 1,6-hexandiol diacrylate (HDDA) for crosslinking. It was investigated that the curing behavior and surface chemistry of PSAs were merely affected by the presence of MMT clays. On the other hand, adhesive properties were influenced by the MMT addition; a cohesive failure was restrained due to improved molecular elasticity even in uncrosslinked acrylic PSAs. However, it was also appeared that combination of 0.3 wt% crosslinking agent and MMT loading might result in the damage of adhesion properties of PSAs possibly due to the lack of chain flexibility. In our studies, it is suggested that the 2-EHA/AA PSAs incorporating 0.01 wt% of MMT and crosslinked with 0.05 wt% of HDDA exhibited the balanced adhesion properties without severe cohesive failure during strip.

Effect of Chemical Structure of Acrylate Monomer on the Transparent Acrylic Pressure Sensitive Adhesives for Optical Applications (광학용 아크릴 점착제내 단량체 화학구조에 따른 점착특성)

  • Baek, Seung-Suk;Jang, Se-Jung;Lee, Sang Won;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.682-686
    • /
    • 2014
  • To prepare transparent acrylic pressure sensitive adhesives (PSAs), terpolymer syrups were photopolymerized from 2- ethylhexyl acrylate and 2-hydroxyethyl acrylate with third monomer having different chemical structure. After polymerization, 1,6-hexanediol diacrylate as a crosslinker and a photoinitiator were added and then UV-irradiated to prepare the PSAs. The adhesion performances and optical characteristics of the PSAs were investigated. Their adhesion performance was dependent on the composition of monomers in the polymer chain but optical properties were maintained at a suitable level. The PSAs prepared by bulky and heteroatom-containing monomers such as IBOA, THFA, and ACMO showed better adhesion performance than others.

Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior (4,4'-Thiodibenzenethiol을 이용한 광경화형 에폭시 아크릴레이트 합성과 굴절률에 관한 연구)

  • Baek, Seung-Suk;Lee, Sang Won;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by $^1H$ NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.

UV-INDUCED POLYMERIZATION OF SIZE-CONTROLLED PLATINUM/POLY[STYRENE-DIVINYLBENZENE-TRI(PROPYLENE GLYCOL) DIACRYLATE] HYDROPHOBIC CATALYST BEADS IN MICROFLUIDICS

  • WEI, JUN;LI, XIANG;SONG, TONG;SONG, ZI-FAN;CHANG, ZHEN-QI;MENG, DA-QIAO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.738-745
    • /
    • 2015
  • The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by ${\gamma}$-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of $200-1,000{\mu}m$ by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads.