• Title/Summary/Keyword: Diacetate

Search Result 233, Processing Time 0.022 seconds

Antioxidant Activity of Roasted Defatted Perilla Seed

  • Jung, Mee-Jung;Chung, Hae-Young;Choi, Jae-Sue
    • Natural Product Sciences
    • /
    • v.7 no.3
    • /
    • pp.72-75
    • /
    • 2001
  • The antioxidant activity of roasted defatted perilla (Perilla frutescens) seed was determined by measuring its radical scavenging effect on 1,1-diphenyl-2- picrylhydrazyl (DPPH) radicals, inhibitory activity on total reactive oxygen species generation in kidney homogenates using 2',7'-dichlorodihydro-fluorescein diacetate, and scavenging effect on authentic peroxynitrites. The methanolic extract of roasted defatted perilla seed showed strong scavenging activity in both DPPH and peroxynitrite radicals, and thus fractionated with several solvents. The antioxidant activity potential of the individual fraction was in the order of ethyl acetate>n-butanol>dichloromethane>water>n-hexane fraction. The ethyl acetate soluble fraction exhibiting strong antioxidant activity was further purified by repeated silica gel and Sephadex LH-20 column chromatography. Luteolin was isolated as one of the active principles from the ethyl acetate fraction, together with the inactive chrysoeriol and apigenin.

  • PDF

The Effect of Epidural Steroid Injections for Low Back Pain (요통환자에 있어서 경막외 투여한 스테로이드의 효과)

  • Kim, Kyung-Hoon;Kweon, Jae-Young;Baik, Seong-Wan;Kim, Inn-Se;Chung, Kyoo-Sub
    • The Korean Journal of Pain
    • /
    • v.7 no.2
    • /
    • pp.231-237
    • /
    • 1994
  • Epidural steroid injection is a treatment for low back pain which allows smaller doses with less risk of side effects and longer duration of relief than systemic administration. From 1 June 1992 to 31 January, 1994, 1 mg/kg of triamcinolone diacetate in 8 ml of lidocaine 1% was administered 56 times to 33 patients who complained of low back pain. Results of epidural steroid injection provided effectiveness in treating various low back pain diseases except postlaminectomy syndrome. However there are no gains about repeated epidural steroid injection.

  • PDF

The influence of heavy metal on microbial biodegradation of organic contaminants in soil (토양내의 중금속이 유기오염물질 생분해에 미치는 영향 연구)

  • 최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.196-201
    • /
    • 2000
  • The influence of adsorption on cadmium toxicity to soil microorganisms in smectite-rich soils and sediments was quantified as a function of solution and sorbent characteristics. Adsorption and surface complexation experiments were conducted to infer Cd sorption mechanisms to a reference smectite and three fractions of a Veritsol soil, and to elucidate the effects of the surface complexation on Cd bioavailability and toxicity in soils and sediments. Cadmium adsorption isotherms conformed to the Langmuir adsorption model, with adsorptive capacities of the different samples dependent on their characteristics. Equilibrium geochemical modeling (MINTEQA2) was used to predict the speciation of Cd in the soil suspensions using Langmuir and Triple Layer surface complexation models. The influence of adsorption and surface complexation on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. Adsorption decreased the toxicity of Cd to soil microorganisms. Inner-sphere complexation is more effective than outer-sphere complexation in reducing the bioavailability and toxicity of heavy metals in soils and sediments.

  • PDF

Formation of Reactive Oxygen Species and Cr(V) Entities in Chromium(VI) Exposed A549 Cells (크롬 6가 투여 후 A549 세포에서의 Reactive Oxygen Species와 크롬 5가의 발생)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.49-57
    • /
    • 1996
  • The production of reactive oxygen species on addition of hexavalent chromium (potassium dichromate, $K_2Cr_2O_7$ ) to lung cells in culture was studied using flow cytometer analysis. A Coulter Epics Profile flow cytometer was used to detect the formation of reactive oxygen species after $K_2Cr_2O_7$ was added to A549 cells grown to confluence. The cells were loaded with the dye, 2',7'-dichlorofluorescein diacetate, after which cellular esterases removed the acetate groups and the dye was trapped intracellularly. Reactive oxygen species oxidized the dye, with resultant fluorescence. Increased doses of Cr(VI) caused increasing fluorescence (10-fold higher than background at 200 gM). Addition of Cr(III) compounds, as the picolinate or chloride, caused no increased fluorescence. Electron paramagnetic resonance (EPR) spectroscopic studies indicated that three (as yet unidentified) spectral "signals" of the free radical type were formed on addition of 20, 50, 100 and 200 gM Cr(VI) to the A549 cells in suspension. Two other EPR 'signals" with the characteristics of Cr(V) entities were seen at field values lower than the standard free radical value. radical value.

  • PDF

Long-term effects of ZnO nanoparticles on exoenzyme activities in planted soils

  • Kwak, Jin Il;Yoon, Sung-Ji;An, Youn-Joo
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.224-229
    • /
    • 2017
  • Zinc oxide nanoparticles (ZnO NPs) have been used as additives in a variety of consumer products. While these particles may enter the environment, only a limited number of studies have investigated the effects of ZnO NPs on soil exoenzymes. Here, we investigate the long-term effects of ZnO NPs at concentrations of 50 and 500 mg/kg on the activities of six soil exoenzymes in planted soils: Dehydrogenase, fluorescein diacetate (FDA) hydrolase, urease, acid phosphatase, arylsulfatase, and ${\beta}-glucosidase$. Significant effects were observed at one or more time points for all enzymes except for FDA hydrolase. These effects included both decreases and increases in enzyme activity. Our results suggest that ZnO NP treatments of 50 and 500 mg/kg can adversely affect soil enzymes, particularly acid phosphatase and urease, and thus, these data may have implications for phosphorous and nitrogen cycles in the soil.

Oleanane Triterpenoids from Gordonia ceylanica

  • Herath, H.M.T.B.;Athukoralage, P.S.
    • Natural Product Sciences
    • /
    • v.4 no.4
    • /
    • pp.253-256
    • /
    • 1998
  • Chemical investigation of hot hexane extract of the stem bark of Gordonia ceylanica afforded a new triterpenoid, $3{\beta}-acetoxy-28-hydroxyolean-12-ene$ (1) and three other oleanane triterpenoids, $3{\beta}-hydroxyolean-12-ene$ (2), $3{\beta}-acetoxyolean-12-ene$ (3), and $3{\beta}-acetoxyolean-12-en-11-one$ (4) which are new to the species. Structure of compound 1 was suggested by $^1H\;NMR,\;^{13}C\;NMR$ and MS spectral data and confirmed by converting to previously reported compound, erythrodiol diacetate (5). Structures of 2, 3 and 4 were established by comparison of the spectral data with the previously reported compounds. Further the acid hydrolysate of 4 was identical with $3{\beta}-hydroxyolean-12-en-11-one$ (6).

  • PDF

Short-term Effects of Cultivars and Compost on Soil Microbial Activities and Diversities in Red Pepper Field (토양 미생물 활성과 다양성에 미치는 고추 품종과 퇴비의 단기적 효과)

  • Park, Kee-Choon;Kwon, Tae-Ryong;Jang, Kil-Soo;Kim, Yeong-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.139-144
    • /
    • 2008
  • A field experiment was conducted to investigate the influence of cultivars and compost on soil microbial activities and diversities in a red pepper-grown field. Compost was applied with 0, 30, and 60M/T $ha^{-1}$ in April and then red pepper seedlings of "Yong-go 4" and "Koeun" were transplanted in May 2007. Soil samples were collected in early August 2007. Measurement of microbial activities was based on a dehydrogenase assay and a fluorescein diacetate hydrolysis. Soil microbial community was characterized with Biolog $EcoPlate^{TM}$ and phospholipid fatty acid(PLFA). Red pepper cultivars did not differentiate the selected soil chemical and microbial properties. Soil pH and soil microbial community changed by amending the soil with 30 and 60 M/T $ha^{-1}$ of compost, and the soil organic matter and potassium content, and soil microbial activities increased in soils amended with 60 M/T $ha^{-1}$ of compost. Red pepper cultivar induced a little different soil chemical properties and microbial activity in soils amended with 60 M/T $ha^{-1}$ of compost even though significant differences were not found in those properties. In conclusion the effects of compost on soil chemical and microbial properties were much higher than red pepper cultivars in short-term period but the effects of red pepper cultivars should be investigated in long-term field test.

Inhibition of Candida albicans Biofilm Formation by Coptidis chinensis through Damaging the Integrity of Cell Membrane (세포막손상 유발로 인한 황련의 캔디다 바이오필름 형성 억제)

  • Kim, Younhee
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Candida biofilms are organized microbial communities growing on the surfaces of host tissues or indwelling medical devices, and the biofilms show enhanced resistance against the conventional antifungal agents. The roots of Coptidis chinensis have been widely used for medicinal purposes in East Asia. The present study was aimed to assess the effect of C. chinensis aqueous extract upon preformed biofilms of 10 clinical Candida albicans isolates and the antifungal activities which contribute to inhibit the C. albicans biofilm formation. Its effect on preformed biofilms was judged using XTT [2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)] reduction assay, and metabolic activity of all tested strains was reduced significantly ($57.3{\pm}14.7%$) at $98{\mu}g/ml$ of the C. chinensis extract. The extract damaged the cell membrane of C. albicans which was analyzed by fluorescein diacetate and propidium iodide staining. The anticandidal activity was fungicidal, and the extract obstructed the adhesion of C. albicans biofilms to polystyrene surfaces, arrested C. albicans cells at $G_o/G_1$ as well, and reduced the growth of biofilms or budding yeasts finally. The data suggest that C. chinensis has multiple antifungal effects on target fungi resulting in preventing the formation of biofilms. Therefore, C. chinensis holds great promise for exploring antifungal agents from natural products in treating and eliminating biofilm-associated Candida infection.

Preliminary Screening of Some Jeju Island Native Plants for Whitening and Antioxidant Activity (제주도 자생식물들에 대한 미백 및 항산화 효능 탐색)

  • Yoo, Byoung-Sam;Moon, Ji-Young;Kim, Ju-Ho;Hyun, Jin-Won;Kang, Kyoung-Ah;Koh, Jea-Sook;Seo, Young-Kyoung;Baek, Ji-Hwoon;Park, Deok-Hoon;Lee, Jong-Sung;Jung, Eun-Sun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.161-171
    • /
    • 2006
  • In this study, we investigated the whitening and anti-oxidant activity of 37 Jeju island native plants. The active ingredients of the plants were prepared by methanol extraction. Whitening activity of plant extracts was examined from the inhibitory effect of tyrosinase and the inhibition of melanin synthesis of the B16-F1 cell line. Their anti-oxidant activity was measured by electron donating ability of DPPH (1,1-diphenyl-2-picrylhydrazyl) and ROS (reactive oxygen species) scavenging activity in V79-4 lung fibroblast cells using DCF-DA (dichlorofluorescin diacetate). Cytotoxicity of the extracts on cell s based experiments was investigated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Also, the toxicity test using a rabbit and the human skin patch test were carried out for examining the safety of the extracts which showed the high whitening activity. It is interesting that the extracts of Lespedeza cuneata, Ligustrum lucidum (stem), Morus bombycis (stem) and Prunella vulgaris var. lilacina showed both potent whitening and anti-oxidant activities.

Seasonal Dynamics of Enzymetic Activities and Functional Diversity in Soils under Different Organic Managements (시용 유기물을 달리한 토양에서 미생물 군락의 효소활성과 기능적 다양성의 계절적 변화)

  • Park, Kee-Choon;Kremer, Robert J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.307-316
    • /
    • 2009
  • Soil microbial activity and diversity are affected by organic sources applied to improve soil quality and fluctuate seasonally. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community-level physiological profiling (CLPP) in a Mexico silt loam in North Central Missouri, USA. Temporal patterns of these parameters were observed by periodic five soil sampling from spring to fall over a two year period. MC increased soil dehydrogenase (DH) activity consistently beginning about three months after MC application; fluorescein diacetate (FDA) hydrolytic activity significantly began to increase by the September of the first year but fluctuated during the following period. DH activity responded more directly to the amount or properties of organic residues in soils while FDA hydrolysis and CLPP were generally influenced by composition of organic sources, and enzyme activities and CLPP showed seasonal variation, which depended on organic sources and soil moisture. MC and cover crops may be useful organic sources for enhancing general soil microbial activity and altering soil microbial diversity, respectively. Because microbial activities and diversity are dynamic and subject to seasonal changes, the effects of organic amendments on these parameters should be investigated frequently during a growing season.