• Title/Summary/Keyword: Diabetic

Search Result 5,059, Processing Time 0.027 seconds

Development of stimulator for peripheral disturbance therapy using A variable Micro-electromagnetic (미약 전자기장을 이용한 말초장애 치료시스템 개발)

  • Kim, Soo-Byung;Lee, Seung-Wook;Shim, Ta-Kyu;Lee, Na-Ra;Lee, Yong-Heum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1209-1216
    • /
    • 2010
  • It has increased that peripheral disturbance(blood flow, nerve, Raynaud's phenomenon) and finger rheumatoid arthritis which is caused by the diabetic complications. To improve these pain issues, we proposed new method for the Finger Disease Therapy(FDT). In this paper, we manufactured solenoid cylindrical coil which was only for the FDT using a variable micro-electromagnetic. Also, we designed the Finger Disease Therapy System(FDTS) which could select three stimulation modes(N_pulse, S_pulse, N/S_pulse) and frequency(0.25hz, 0.5hz, 1hz). We used a Teslameter to measure magnetic flux inner solenoid, and measured magnetic flux as distance(0 ~ 3cm) inner solenoid with stimulation modes and frequency. In the results, magnetic flux was the highest in center of solenoid(0cm) for all stimulation modes. Also, the highest magnetic flux was measured as N_pulse(294.3mT), S_pulse(293.8mT) in 1Hz and N/S_pulse (275.4mT) in 0.25Hz, respectively. Therefore, we developed the FDTS using various pattern and intensity for finger diseases therapy, and checked therapy clinic application possibility of the FDTS as measuring magnetic flux inner solenoid.

Rice Cell Origin Recombinant Human Granulocyte Macrophage Colony-Stimulating Factor (rrhGM-CSF) Could Improve the Wound Healing in Diabetic Hamster (당뇨가 유발된 햄스터 창상치유에 미치는 벼세포 유래 GM-CSF의 효과)

  • Han, Kyu-Boem;Heo, Si-Hyun;Jeong, Jin-Ju;Han, Man-Deuk;Kim, Wan-Jong;Shin, Kil-Sang
    • Applied Microscopy
    • /
    • v.39 no.3
    • /
    • pp.253-260
    • /
    • 2009
  • GM-CSF is a multipotent growth factor, which also plays an important role during the process of wound healing. rrhGM-CSF was specifically produced from rice cell culture in our laboratory (Hanson Biotech Co., Ltd, Daejeon). The rrhGMCSF contains more oligosaccharide side chains than any other types of GM-CSF. This work was taken to evaluate the influence on wound healing of rrhGM-CSF in male golden hamsters. Full thickness skin defects of 9 mm in diameter were made in the back of hamsters, and 100 ${\mu}L$ ointment containing rrhGM-CSF 50 ${\mu}g/mL$ was applied. Control groups were given ointment without rrhGM-CSF. The wound sizes were relatively reduced and skin was well regenerated in the experimental group compared with the control group. Structurally, reepithelialization and architecture of the skin following injury were well accomplished in the experimental group. And also, positive reaction of PCNA of the skin following injury was more prominent in rrhGM-CSF containing ointment treatment group. Since this type of GM-CSF has highly glycosylated side chains, the effectiveness might be retain longer and stable, regarding acceleration of wound healing in the animal model. The present study has important implications for further development of the therapeutic manipulation of wound healing using rrhGM-CSF.

Molecular Analysis of Growth Factor and Clock Gene Expression in the Livers of Rats with Streptozotocin-Induced Diabetes

  • Kim, Joo-Heon;Shim, Cheol-Soo;Won, Jin-Young;Park, Young-Ji;Park, Soo-Kyoung;Kang, Jae-Seon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.163-169
    • /
    • 2009
  • Many biological systems are regulated by an intricate set of feedback loops that oscillate with a circadian rhythm of roughly 24 h. This circadian clock mediates an increase in body temperature, heart rate, blood pressure, and cortisol secretion early in the day. Recent studies have shown changes in the amplitude of the circadian clock in the hearts and livers of streptozotocin (STZ)-treated rats. It is therefore important to examine the relationships between circadian clock genes and growth factors and their effects on diabetic phenomena in animal models as well as in human patients. In this study, we sought to determine whether diurnal variation in organ development and the regulation of metabolism, including growth and development during the juvenile period in rats, exists as a mechanism for anticipating and responding to the environment. Also, we examined the relationship between changes in growth factor expression in the liver and clock-controlled protein synthesis and turnover, which are important in cellular growth. Specifically, we assessed the expression patterns of several clock genes, including Per1, Per2, Clock, Bmal1, Cry1 and Cry2 and growth factors such as insulin-like growth factor (IGF)-1 and -2 and transforming growth factor (TGF)-${\beta}1$ in rats with STZ-induced diabetes. Growth factor and clock gene expression in the liver at 1 week post-induction was clearly increased compared to the level in control rats. In contrast, the expression patterns of the genes were similar to those observed after 5 weeks in the STZ-treated rats. The increase in gene expression is likely a compensatory change in response to the obstruction of insulin function during the initial phase of induction. However, as the period of induction was extended, the expression of the compensatory genes decreased to the control level. This is likely the result of decreased insulin secretion due to the destruction of beta cells in the pancreas by STZ.

Relationship between dairy products, fish and shellfish intake and metabolic syndrome risk factors in prediabetes: based on the sixth Korea National Health and Nutrition Examination Survey (KNHANES VI-3) 2015 (전당뇨병 대상자의 유제품 및 어패류 섭취와 대사증후군 위험인자와의 관련성 연구 : 2015년 제 6기 국민건강영양조사 자료를 바탕으로)

  • Park, Jeong Seop;Kim, Kyoung Yun
    • Journal of Nutrition and Health
    • /
    • v.50 no.5
    • /
    • pp.447-459
    • /
    • 2017
  • Purpose: Metabolic Syndrome (MetS) is defined as a cluster of inter-connected metabolic disorders involving the glucose metabolism, dyslipidaemia, high blood pressure, and abdominal obesity. The worldwide prevalence has been rapidly increasing to approximately 20~25%, and the prevalence in Korea as of 2012 was reported to be 31.3%. The association of MetS with various diseases needs to be analyzed by conducting an investigation of frequently consumed foods, such as dairy products, fish, and shellfish in prediabetic subjects. Methods: The dietary intake of subjects who met the criteria of the study from January to December 2015 was assessed using the 24-hour recall method. After adjusting the age, sex, BMI, and total energy intake, which are confounding factors that may affect the dietary intake of the subjects, the associations of dairy products, fish, and shellfish intake with the MetS risk factors was analyzed. Results: In prediabetes, the intake of subjects who consumed more than the dairy products median (187.0 g) and the elevation risk of TC [OR, 2.369; 95% CI, 1.057 to 5.312] showed a significant positive association. In prediabetes, the intake of subjects who consumed more than the fish and shellfish median (44.0 g) and the elevation risk of BP showed a significantly weak negative association [OR, 0.073; 95% CI, 0.010 to 0.520]. The probability that the blood LDL cholesterol was ${\geq}100mg/dL$ decreased 0.397 times [95% CI, 0.189 to 0.832]. Conclusion: To control the metabolic risk factors of pre-diabetic and vascular disease subjects, proper dairy, fish and shellfish intake will be important.

Hypolipidemic and Anti-oxidant Effects of Chunghyl Plus in Type II Diabetic Mice Model (제2형 당뇨 마우스 모델에서 청혈플러스의 항고지혈 및 항산화효과)

  • Choi, Koh Eun;Seol, In Chan;Kim, Yoon Sik;Cho, Hyun Kyoung;Yoo, Ho Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.164-176
    • /
    • 2016
  • This study was perfomed to investigate the effects of Chunghyul-plus(CHP) on oxidative damage and hyperlipidemia in db/db mouse. After treatment with CHP, safety in cytotoxicity, heavy metal toxicity, production of reactive oxygen species(ROS), nitric oxide (N0) and proinflammatory cytokine IL-Ib, TNF-a, IL-6 in RAW 264.7 cells. Serum total cholesterol, LDL cholesterol, HDL cholesterol, triglyceride, insulin, GLP-1, glucose, food intake, body weight, organ weight, AST, ALT, ALP, BUN, creatine and histologic change of liver and aorta were measured in db/db mouse after oral administration of CHP. CHP showed safety in cytotoxicity and toxicity of liver and kidney for logn time administration. CHP increased the DPPH and ABTS radical scavenging activity. CHP showed significant inhibitory effect on reactive oxygen species (ROS), and showed inhibitory effect on nitiric oxide(NO) compared to control group. CHP decreased cytokine IL-6 production significantly, and decreased IL-1β and TNF-α compared to control group. CHP decreased body and organ weitht, intake food, and glucose levels compared to control group. CHP decreased total cholesterol and triglyceride significantly, and decreased LDL-cholesterol levels and increased HDL-cholesterol levels compared to control group. CHP decreased atherogenic index and cardiac risk factor significantly. CHP increased serum insulin and GLP-1 compared to control group. In histologic examination, lipophagy in the liver and aorta decreased in CHP treated mice and the cell was regular and boundary of vessel wall was clear compared to control group. These results suggest that CHP is effective in antioxidation activity and treatment and prevention of hyperlipidemia, atherosclerosis, diabetes, ischemic heart disease, stroke and other cardiocerebrovascular disease.

Enhancement of γ-aminobutyric Acid Production by Combination of Barley Leaf and Corn Silk and Its Fermentation with Lactic Acid Bacteria (보리 잎과 옥수수 수염의 혼합과 유산균 발효를 이용한 γ-aminobutyric acid 생산 증진)

  • Kim, Hyung-Joo;Yoon, Young-Geol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.171-185
    • /
    • 2017
  • ${\gamma}$-aminobutyric acid (GABA) is a non-proteinogenic amino acid biosynthesized through decarboxylation of L-glutamic acid by glutamic acid decarboxylase. GABA is believed to play a role in defense against stress in plants. In humans, it is known as one of the major inhibitory neurotransmitters in the central nervous system, exerting anti-hypertensive and anti-diabetic effects. In this report, we wanted to enhance the GABA production from the barley leaf and corn silk by culturing them with lactic acid bacteria (LAB). The barley leaf and corn silk were mixed with various weight combinations and were fermented with Lactobacillus plantarum in an incubator at $30^{\circ}C$ for 48 h. After extracting the fermented mixture with hot water, we evaluated the GABA production by thin layer chromatography and GABase assay. We found that the fermented mixture of the barley leaf and corn silk in a nine to one ratio contained a higher level of GABA than other ratios, meaning that the intermixture and fermentation technique was effective in increasing the GABA content. We also tested several biological activities of the fermented extracts and found that the extracts of the fermented mixture showed improved antioxidant activities than the non-fermented extracts and no indication of cytotoxicity. These results suggest that our approach on combining the barley leaf and corn silk and its fermentation with LAB could lead to the possibility of the development of functional foods with high levels of GABA content and improved biological activities.

The Hypoglycemic Effect of Saururus chinensis Baill in Animal Models of Diabetes Mellitus

  • Joo, Hee-Jeong;Kang, Ming-Jung;Seo, Tae-Jin;Kim, Hyun-A;Yoo, Sung-Ja;Lee, Soo-Kyung;Lim, Hwa-Jae;Byun, Boo-Hyeong;Kim, Jung-In
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.413-417
    • /
    • 2006
  • The purpose of this study was to investigate the hypoglycemic effect of Saururus chinensis Baill in vitro and in vivo. Methanol extract of S. chinensis Baill inhibited yeast ${\alpha}$-glucosidase activity by 49.8%, which was twice as strong as that of acarbose at a concentration of 0.5 mg/mL in vitro. The effect of S. chinensis Baill methanol extract on the postprandial increase in blood glucose levels was studied in streptozotocin-induced diabetic rats using a carbohydrate load test. Oral administration of S. chinensis Baill extract (500 mg/kg) significantly decreased incremental blood glucose levels at 60 and 90 min (p<0.05) after oral ingestion of starch (1 g/kg). The area under the glucose response curve of the S. chinensis Baill group was significantly decreased compared to that of the control group (p<0.05). The effect of prolonged feeding of S. chinensis Baill was studied in an animal model of type 2 diabetes. Three-week-old db/db mice were fed an AIN-93G diet or a diet containing 0.5% S. chinensis Baill extract for 7 weeks after 1 week of adaptation. Plasma glucose, insulin, and blood glycated hemoglobin levels of the mice fed S. chinensis Baill extract were significantly lower than those of the control group (p<0.05). Therefore, we conclude that S. chinensis Baill is effective in controlling hyperglycemia in animal models of diabetes mellitus.

Development and Hypoglycemic Effect of Low-fat and Sugar-free Cookie (저지방 무설탕 쿠키의 제조와 혈당 강하 효과)

  • Park, Sun-Min;Kim, Young-Soon;Yoon, In-Chul;Seo, Eun-Hae;Ko, Byoung-Seob;Choi, Soo-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.487-492
    • /
    • 2002
  • Low-fat and sugar-free (LFSF) cookies were developed for patients with metabolic syndrome X, such as obesity, diabetes, coronary heart disease, and hypertention, using artificial sweeteners (mixture of aspartame and saccharin), pectin and herb extracts such as Polygonatum Odoratum (Mill) Druce, Schizandrae Fructus and Lycii Fructus, without sugar and fats. LFSF cookies were composed of 7.5 : 1 of aspartame and saccharin, 5% pectin, 49% protein, and 5% herb extracts, with reduced fat level. The values for area under the curve in oral glucose tolerance tests were significantly lower in 90% pancreatomized-(Px, n = 8) and sham - operated (Sham, n = 8) rats which consumed LFSF cookies, than the control, which consumed regular cookies. Blood glucose levels were higher and the peak levels were significantly lower in the LFSF cookies group than the control group of Px and Sham rats. Blood glucose levels of healthy female college students (n = 10) at 30 and 60 min after the consumption of 30 g LFSF and regular cookies were not different, but they were significantly lower in the LFSF-cookies group in diabetes patients (n = 10). In conclusions, LFSF cookies was considered as a good snack for diabetic patients.

Effects of ${\beta}-Glucan$ from Agaricus blazei Murill on Blood Glucose and Lipid Composition in db/db Mice (db/db 마우스에서 아가리쿠스 버섯 ${\beta}-Glucan$이 혈당과 지질성분에 미치는 영향)

  • Choi, Jung-Mi;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1418-1425
    • /
    • 2000
  • Obesity and diabetes mellitus are associated with common pathogenic mechanism, and ${\beta}-glucan$ of Agaricus blazei Murill is potent inhibitor of intestinal ${\alpha}-glycosidase$ and inhibit the digestion of starch and sucrose in the small intestine. In this studies, there was observed the anti-hyperglycemic effect in obese diabetic mice(C57BLKsJ db/db), which were supplied Agaricus and Acarbose for 5 weeks. In db/db mice, food intake and body weight gain were decreased significantly in Agaricus groups(p<0.05). Also these group exhibited lower fasting serum glucose level compared with control group. HbA1c level, triglyceride level, total cholesterol level, HDL cholesterol level, LDL cholesterol level and VLDL cholesterol level were lowered in db/db mice. The activity of disaccharidases on proximal and distal segments of small intestine was decreased. In conclusion, it was assumed that ${\beta}-glucan$ of Agaricus blazei Murill has anti-hyperglycemic and anti-obesitic effects by reducing food intake and body weight gain, and also decreasing serum glucose and lipid level through inhibiting the activity of small intestinal disaccharidases.

  • PDF

Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells (청미래덩굴 잎 물추출물이 처리된 HepG2 세포에서의 포도당흡수기전 연구)

  • Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lee, Sung Mee;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • Purpose: Previous studies have shown that treatment with Smilax china L. leaf extract (SCLE) produces antidiabetic effects due to ${\alpha}$-glucosidase inhibition. In this study, we examined the mechanism underlying these antidiabetic effects by examining glucose uptake in HepG2 cells cultured with SCLE. Methods: Glucose uptake and glucokinase activity were examined using an assay kit. Expression of glucose transporter (GLUT)-2, GLUT-4, and HNF-$1{\alpha}$ was measured by RT-PCR or western blot. Results: Treatment with SCLE resulted in enhanced glucose uptake in HepG2 cells, and this effect was especially pronounced when cells were cultured in an insulin-free medium. SCLE induced an increase in expression of GLUT-2 but not GLUT-4. The increase in the levels of HNF-$1{\alpha}$, a GLUT-2 transcription factor, in total protein extract and nuclear fraction suggest that the effects of SCLE may occur at the level of GLUT-2 transcription. In addition, by measuring the change in glucokinase activity following SCLE treatment, we confirmed that SCLE stimulates glucose utilization by direct activation of this enzyme. Conclusion: These results demonstrate that the potential antidiabetic activity of SCLE is due at least in part to stimulation of glucose uptake and an increase in glucokinase activity, and that SCLE-stimulated glucose uptake is mediated through enhancement of GLUT-2 expression by inducing expression of its transcription factor, HNF-$1{\alpha}$.