• Title/Summary/Keyword: Dexamethasone(Dex)

검색결과 51건 처리시간 0.041초

Dexamethasone을 이용한 누에(Bombyx mori)에 대한 동충하초균 (Paecilomyces japonicus)의 접종율 제고에 관한 연구 (Study on the Inoculation Augmentation of paecizomyces japonicus to the Silkworm, Bombyx mori, Using Dexamethasone)

  • 김길호;박영진;김용균;이영인
    • 한국응용곤충학회지
    • /
    • 제40권1호
    • /
    • pp.51-58
    • /
    • 2001
  • 동충하초로 불리우는 곤충병원진균(Paecilomycesjaponicus)이 의약적으로 상품화되어 사용되고 있으며,누에(Bombyxmori)가 이 진균의 최적 기주로 선발되어 자실테 생산에 이용되고 있다. 현재 이 균주의 처리는 갓 탈피한 누에 5령 유충에 접종하고 고온(30\"C),다습(약 90%상대 습도)및 24시간 절식 조건에서 스트레스에 의한 면역 저하를 유도하여 균주 접종율을 높히는 방식을 취하고 있다. 본 연구는 면역반응 중개에 중요한 eicosanoid반응을 억제시키는 dexamethas-one(DEX)을 이용하여 물리적 스트레스 환경의 조성 없이도 누에에 면역 저하를 유도시키려는 목적으로 수행되었다. 누에 $\lrcorner$령 유충에 주입된 DEX(1007g)는 병원진균의 혈구치사 능력을 뚜렷 이 증가시켰다. 또 DEX(1007g)는 작은혹형성이나 피막형성에서 나타나는 혈구응집 반응이나, phenoloxidase활성으로 측정된 누에의 세포성 면역 반응을 뚜렷이 저하시켰다 효과적 병원진균 의 충체 처리를 위해 곤충체의 부착 능력을 제고시켜 접종율을 높히는 것으로 본 연구에서 판명된 Triton-X(0.05%)를 모든 충체 처리 용액에 이용되었다. DEX(100$\mu\textrm{g}$)단독처리가 기존의 물리 적 스트레스 환경 처리를 통한 방법과 유사한 수준으로 병원진균의 접종율을 나타냈다. 본 연구는 DEX가 동충하초 접종율을 제고시킬 수 있음을 시사했고, 누에는 이러한 진균 병원체에 대해 서 eicosanoid를 이용하여 세포성 면역을 발현하는 것으로 제시하고 있다.고 있다.

  • PDF

The effects of dexamethasone on the apoptosis and osteogenic differentiation of human periodontal ligament cells

  • Kim, Sung-Mi;Kim, Yong-Gun;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.168-176
    • /
    • 2013
  • Purpose: The purpose of the current study was to examine the effect of dexamethasone (Dex) at various concentrations on the apoptosis and mineralization of human periodontal ligament (hPDL) cells. Methods: hPDL cells were obtained from the mid-third of premolars extracted for orthodontic reasons, and a primary culture of hPDL cells was prepared using an explant technique. Groups of cells were divided according to the concentration of Dex (0, 1, 10, 100, and 1,000 nM). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for evaluation of cellular viability, and alkaline phosphatase activity was examined for osteogenic differentiation of hPDL cells. Alizarin Red S staining was performed for observation of mineralization, and real-time polymerase chain reaction was performed for the evaluation of related genes. Results: Increasing the Dex concentration was found to reduce cellular viability, with an increase in alkaline phosphatase activity and mineralization. Within the range of Dex concentrations tested in this study, 100 nM of Dex was found to promote the most vigorous differentiation and mineralization of hPDL cells. Dex-induced osteogenic differentiation and mineralization was accompanied by an increase in the level of osteogenic and apoptosis-related genes and a reduction in the level of antiapoptotic genes. The decrease in hPDL cellular viability by glucocorticoid may be explained in part by the increased prevalence of cell apoptosis, as demonstrated by BAX expression and decreased expression of the antiapoptotic gene, Bcl-2. Conclusions: An increase in hPDL cell differentiation rather than cellular viability at an early stage is likely to be a key factor in glucocorticoid induced mineralization. In addition, apoptosis might play an important role in Dex-induced tissue regeneration; however, further study is needed for investigation of the precise mechanism.

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

Prenatal Stress Induces Skeletal Malformations in Mouse Embryos

  • Kim, Jongsoo;Yun, Hyo Jung;Lee, Ji-Yeon;Kim, Myoung Hee
    • 대한의생명과학회지
    • /
    • 제21권1호
    • /
    • pp.15-22
    • /
    • 2015
  • Dexamethasone, a synthetic glucocorticoid (GC), is clinically administered to woman at risk for premature labor to induce fetal lung maturation. However, exposure to repeated or excess GCs leads to intrauterine growth restriction (IUGR) and subsequently increases risk of psychiatric and cardio-metabolic diseases in later life through fetal programming mechanisms. GCs are key mediators of stress responses, therefore, maternal nutrient restriction or psychological stress during pregnancy also causes negative impacts on birth and neurodevelopment outcome of fetuses, and other congenital defects, such as craniofacial and skeletal abnormalities. In this study, to examine the effect of prenatal stress on fetal skeletal development, dexamethasone (1 mg/kg [DEX1] or 10 mg/kg [DEX10] maternal body weight per day) was administered intraperitoneally at gestational day 7.5~9.5 and the skeletons were prepared from embryos at day 18.5. Seven out of eighteen (39%) embryos treated with DEX10 showed axial skeletal abnormalities in either the T13 or L1 vertebrae. In addition, examination of the sternum revealed that xiphoid process, the protrusive triangular part of the lower end of the sternum, was bent more outward or inward in DEX group embryos. In conclusion, our findings suggest a possible link to the understanding of the effect of uterine environment to the fetal skeletal features.

흰 쥐 모델에서 지연재식 시 dexamethasone과 OP-1의 표면처리가 치주조직 재생 및 항흡수 작용에 미치는 효과 (THE EFFECT OF PERIODONTAL REGENERATION AND ANTI-RESTORATION OF DEXAMETHASONE AND OP-1 FOLLOWING DELAYED REPLANTATION IN RAT MODEL)

  • 권오택;금기연;이승종
    • Restorative Dentistry and Endodontics
    • /
    • 제26권4호
    • /
    • pp.296-306
    • /
    • 2001
  • The purpose of this study was to observe the effect of dexamethasone and osteogenic protein-1(BMP-7) on bone, cementum and periodontal tissue regeneration. A total of 60 Sprague-Dawley white female mice were selected and beta-APN was used for five days to extract the maxillary first molar a traumatically. After the extraction of the teeth, the mesiobuccal root canal was filled with Caviton$^{\circledR}$. The teeth were etched with citric acid for 1 min and coated with one of four different experimental solutions : DEX(500nM/ml), DEX(1000nM/ml), OP-1(100$\mu\textrm{g}$/ml) and OP-1(500$\mu\textrm{g}$/ml) for three minutes depending on the group. All teeth were then replanted under microscope. All replantation procedures were done within 30 minutes. Teeth that were replanted after 30 minutes of bench dry only was used as positive control. All animals were sacrificed at 3 weeks following replantation and histologic observtion was done. The results were as follows ; 1. Active root resorption rate was decreased by the order of OP-1(500$\mu\textrm{g}$/ml), DEX(1000nM/ml), OP-1(100$\mu\textrm{g}$/ml), and DEX(500nM/ml). There was statistically less root resorption in OP-1 (500$\mu\textrm{g}$/ml) and DEX(1000nM/ml) group(P<0.05). 2. The group with higher concentration of dexamethasone(1000nM/ml) had statistically more bone union compared to positive control group(P<0.05),but there were no significant differences among four experimental groups. 3. OP-1(500$\mu\textrm{g}$/ml) and DEX(1000nM/ml) groups showed less degree of inflammation compared to the OP-1(100$\mu\textrm{g}$/ml). DEX(500nM/ml), and positive control group (P<0.05). In conclusion, the group with higher concentration of OP-1 had the best results on root resorption, bone ankylosis and anti-inflammatory effects compared to the other experimental groups, but a long-term study is also necessary to evaluate the exact pharmacological effects of the drugs in the future.

  • PDF

Dexamethasone Disrupts Cytoskeleton Organization and Migration of T47D Human Breast Cancer Cells by Modulating the AKT/mTOR/RhoA Pathway

  • Meng, Xian-Guo;Yue, Shou-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10245-10250
    • /
    • 2015
  • Background: Glucocorticoids are commonly co-administered with chemotherapy to prevent drug-induced allergic reactions, nausea, and vomiting, and have anti-tumor functions clinically; however, the distinct effects of GC on subtypes of tumor cells, especially in breast cancer cells, are still not well understood. In this study, we aimed to clarify the effect of GC on subtypes of T47D breast cancer cells by focusing on apoptosis, cell organization and migration, and underluing molecular mechanisms. Materials and Methods: The cell scratch test was performed to observe the cell migration rate in T47D cells treated with dexamethasone (Dex). Hoechst and MTT assays were conducted to detect cell survival and rhodamine-labeled phalloidin staining to observe cytoskeleton dynamics. Related factors in the AKT/mTOR pathway were determined by Western blotting. Results: Dex treatment could effectively inhibit T47D breast cancer cell migration with disruption of the cytoskeletal dynamic organization. Moreover, the effect of Dex on cell migration and cytoskeleton may be mediated by AKT/mTOR/RhoA pathway. Although Dex inhibited T47D cell migration, it alone may not induce cell apoptosis in T47D cells. Conclusions: Dex in T47D human breast cancer cells could effectively inhibit cell migration by disrupting the cytoskeletal dynamic organization, which may be mediated by the AKT/mTOR/RhoA pathway. Our work suggests that glucocorticoid/Dex clinical use may prove helpful for the treatment of breast cancer metastasis.

Efficacy and Safety of an Increased-dose of Dexamethasone in Patients Receiving Fosaprepitant Chemotherapy in Japan

  • Kumagai, Hozumi;Kusaba, Hitoshi;Okumura, Yuta;Komoda, Masato;Nakano, Michitaka;Tamura, Shingo;Uchida, Mayako;Nagata, Kenichiro;Arita, Shuji;Ariyama, Hiroshi;Takaishi, Shigeo;Akashi, Koichi;Baba, Eishi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.461-465
    • /
    • 2014
  • Background: Antiemetic triplet therapy including dexamethasone (DEX) is widely used for patients receiving highly emetogenic chemotherapy (HEC). In Japan, the appropriate dose of DEX has not been established for this combination. Materials and Methods: To assess the efficacy and safety of increased-dose DEX, we retrospectively examined patients receiving HEC with antiemetic triplet therapy. Results: Twenty-four patients (fosaprepitant group) were given an increased-dose of DEX (average total dose: 45.8mg), fosaprepitant, and 5-HT3 antagonist. A lower-dose of DEX (33.6mg), oral aprepitant, and 5-HT3 antagonist were administered to the other 48 patients (aprepitant group). The vomiting control rates in the fosaprepitant and aprepitant groups were 100% and 85.4% in the acute phase, and were 75.0% and 64.6% in the delayed phase. The incidences of toxicity were similar comparing the two groups. Conclusions: Triplet therapy using an increased-dose of DEX is suggested to be safe and effective for patients receiving HEC.

나일틸라피아의 흉선과 말초 혈액내 림프구에 미치는 Glucocorticosteroid 호르몬의 효과 (Effects of Glucocorticosteroids on the Thymus and Peripheral Lymphocytes of Nile Tilapia, Oreochromis niloticus)

  • 장선일;조재윤
    • 한국양식학회지
    • /
    • 제7권2호
    • /
    • pp.123-134
    • /
    • 1994
  • 나일 틸라피아의 흉선과 말초 혈액내 림프구에 glucocorticoste.oid (GCS)가 미치는 영향을 알아보기 위해 여러 가지 농도로 dexamethasone (DEX)와 hydrocortisone (HC)을 치어 (5-7g) 복강에 주사하여 흥선의 조직과 세포수 등을 대조군과 비교하였다. 생체에 DEX와 HC를 투여한 군에서는 흥선의 무게 감소와 흥선 세포의 수적 감소가 나타났으며, 그 효과는 이들 호르몬의 처리 양과 시간에 의존적이었다. 10mM DEX와 10mM HC를 시험관내 흥선 세포에 12시간 처리할 경우 DNA 절편화가 유도되었으며, 그 유형은 180-200 염기쌍으로 다양하게 절편되었다. DEX와 HC를 생체에 여러 시간 동안 처리했을 때 말초 혈액내 과립 백혈구의 수적 변동은 없었지만, 10mM DEX와 10mM HC을 2-3일 처리시 말초 혈액내 림프구 수는 감소되었다. 이상의 결과는 흥선 세포와 순환하는 림프구가 호르몬의 특성과 처리량 및 시간과 같은 여러 가지 요인에 따라 GCS에 반응하는 것을 시사해 주었다.

  • PDF

Pregnancy outcomes following the administration of high doses of dexamethasone in early pregnancy

  • Ahmadabad, Hasan Namdar;Jafari, Sabah Kayvan;Firizi, Maryam Nezafat;Abbaspour, Ali Reza;Gharib, Fahime Ghafoori;Ghobadi, Yusef;Gholizadeh, Samira
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권1호
    • /
    • pp.15-25
    • /
    • 2016
  • Objective: In the present study, we aimed to evaluate the effects of high doses of dexamethasone (DEX) in early pregnancy on pregnancy outcomes. Methods: Pregnant BALB/c mice were treated with high-dose DEX in the experimental group or saline in the control group on gestational days (GDs) 0.5 to 4.5. Pregnant mice were sacrificed on GDs 7.5, 13.5, or 18.5 and their peripheral blood, placentas, fetuses, and uterine tissue were collected. Decidual and placenta cell supernatants were examined to evaluate the effect of DEX on the proliferation of mononuclear cells, the quantity of uterine macrophages and uterine natural killer (uNK) cells, and levels of progesterone and $17{\beta}-estradiol$, as determined by an 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. We also were measured fetal and placental growth parameters on GD 18.5. Results: We found that high doses of DEX were associated with an increased abortion rate, enhancement of the immunosuppressive effect of the decidua, alterations in placental growth parameters, decreased progesterone and $17{\beta}-estradiol$ levels, and a reduced frequency of macrophages and uNK cells. Conclusion: Our data suggest that the high-dose administration of DEX during early pregnancy negatively affected pregnancy outcomes.

인체의 복강 내 지방조직 배양을 통한 OB 유전자 발현과 Leptin 분비에 미치는 인슐린, Dexamethasone과 성장호르몬의 단독 또는 복합적 영향에 관한 연구 (The Separate and Combined Effects of Insulin, Dexamethasone and Growth Hormone on the OB Gene Expression and Leptin Secretion from Cultured Human Visceral Adipose Tissue)

  • 황일태;김경희;황진순;신충호;양세원
    • Clinical and Experimental Pediatrics
    • /
    • 제46권8호
    • /
    • pp.795-802
    • /
    • 2003
  • 목 적 : 지방조직에 존재하는 OB 유전자에서 전사된 호르몬인 leptin은 여러 가지 생리적 요인이나, 호르몬에 의해서 영향을 받는다. Leptin의 발현에 대한 호르몬에 대한 연구가 많은 동물 실험들을 상대로 시도되고 있으나 사람에서 OB 유전자와 leptin 분비를 조절하는 호르몬의 영향 및 상호작용에 대해서는 아직 명확히 밝혀져 있지 않다. 본 연구는 사람의 복강에서 추출한 조직배양에서 OB 유전자와 leptin 분비를 조절하는 호르몬의 영향 및 상호작용에 대해서 알아보고자 하였다. 방 법 : 복부수술을 위하여 입원한 환자 7명을 대상으로 복강 내 지방조직을 절제하여 배양액에 호르몬을 첨가하지 않은 상태와 배양액에 인슐린, dexamethasone 및, 성장호르몬을 단독으로 첨가하거나, 인슐린과 dexamethasone을 동시에 첨가하거나, 인슐린과 dexamethasone과 성장호르몬을 같이 첨가한 상태에서 48시간 배양한 후 RNA를 추출하여 경쟁적 역전사 중합반응(competitive RT-PCR)을 시행하여 OB 유전자의 발현을 측정하고, human leptin IRMA Kit를 사용하여 지방조직에서 분비되는 배양액 내 leptin 양을 측정하였다. 결 과 : 인슐린은 단독으로는 OB 유전자 발현과 leptin 분비에는 영향을 미치지 못하였다. Dexamethasone은 OB 유전자의 발현과 leptin 분비를 증가시켰는데, 48시간 배양 후에 대조군에 비해 의미있게 증가하였다. 인슐린과 dexamethasone을 같이 배양시에는 OB 유전자 발현에 있어서는 의미있는 차이는 없었으나, leptin 분비는 48시간 배양 후 대조군에 비해 의미있게 증가하였다. 또한 성장호르몬 단독으로는 OB 유전자의 발현에 영향을 미치지는 못하나, 인슐린, dexamethasone, 성장호르몬을 같이 배양시에 인슐린과 dexamethasone의 OB 유전자 발현과 leptin 분비증가 능력을 억제시켰다. 결 론 : 인슐린 단독으로는 leptin 분비를 증가시키지 못하나, dexamethasone에 의해 상승작용이 나타나고, 이는 dexamethasone이 OB 유전자 발현을 증가시킨 후에 인슐린이 세포질내에서의 leptin 분비를 증가시킨다고 추정할 수 있다. 성장호르몬의 억제효과는 성장호르몬이 인슐린이나 dexamethasone에 대한 지방조직의 반응성을 변화시킴으로써 간접적으로 leptin의 발현을 조절할 것으로 추정되며, dexamethasone이 OB 유전자 발현을 증가시킨 후에 인슐린이 세포질 내에서의 leptin 분비를 증가시킨다는 것에 대한 연구가 더 필요하리라 사료된다.