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Prenatal Stress Induces Skeletal Malformations in Mouse Embryos 
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Dexamethasone, a synthetic glucocorticoid (GC), is clinically administered to woman at risk for premature labor to 
induce fetal lung maturation. However, exposure to repeated or excess GCs leads to intrauterine growth restriction (IUGR) 
and subsequently increases risk of psychiatric and cardio-metabolic diseases in later life through fetal programming 
mechanisms. GCs are key mediators of stress responses, therefore, maternal nutrient restriction or psychological stress 
during pregnancy also causes negative impacts on birth and neurodevelopment outcome of fetuses, and other congenital 
defects, such as craniofacial and skeletal abnormalities. In this study, to examine the effect of prenatal stress on fetal 
skeletal development, dexamethasone (1 mg/kg [DEX1] or 10 mg/kg [DEX10] maternal body weight per day) was 
administered intraperitoneally at gestational day 7.5~9.5 and the skeletons were prepared from embryos at day 18.5. 
Seven out of eighteen (39%) embryos treated with DEX10 showed axial skeletal abnormalities in either the T13 or L1 
vertebrae. In addition, examination of the sternum revealed that xiphoid process, the protrusive triangular part of the 
lower end of the sternum, was bent more outward or inward in DEX group embryos. In conclusion, our findings suggest 
a possible link to the understanding of the effect of uterine environment to the fetal skeletal features. 
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INTRODUCTION 

 

Glucocorticoids (GCs) are involved in normal develop- 

mental processes of diverse organs such as kidneys, lung, 

heart, pancreas, and gut. As GC has multiple metabolic and 

immunological effects, it is usually applied to treat patients 

with inflammatory, allergic, and immune disorders in 

children and adults. Although it has many positive effects 

with drug use, patients taking chronic GC therapy often 

suffer from potential side effects, in particular on the skeleton, 

including growth retardation during childhood and decreased 

bone quality in adults (Canalis 2005; Henneicke et al., 

2014). During pregnancy, GC is clinically administered to 

pregnant woman at risk for premature labor to induce fetal 

lung maturation (Ward 1994; Sloboda et al., 2005). Despite 

the clear benefits of antenatal GC therapy, exposure to 

repeated or excess GCs have been known to cause a intrau- 

terine growth restriction and subsequently increased risk of 

psychiatric and cardio-metabolic diseases in later life 

(Newnham and Moss 2001). Besides, different types of 

prenatal stress during pregnancy have been also revealed to 

cause other congenital defects, such as craniofacial and 

skeletal anomalies as well as a reduction of birth weight, in 

a variety of animal models (Śliwa et al., 2006; Lee et al., 

2008; Choe et al., 2011). 

A few studies have demonstrated the effect of prenatal 
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stress and excess glucocorticoid on fetal skeletal develop- 

ment, and on skeletal growth and bone mineralization after 

birth as a long-term effect (Swolin-Eide et al., 2002; Śliwa 

et al., 2006; Lee et al., 2008; Choe et al., 2011). However, 

there is still no coherent connection between a specific type 

of stressor and the concomitant skeletal changes. Since the 

prenatal stress affects on different tissues in a variety of 

different ways, particularly during vulnerable periods of 

developmental processes, more evidence is needed to deter- 

mine the relationship between prenatal experiences and the 

skeletal growth and the bone health in later life. 

We have recently demonstrated that administration of 

dexamethasone (DEX), a synthetic GC, during the gesta- 

tional day 7.5~9.5 of pregnant mice causes placental defect 

and embryonic growth restriction in a sex-dependent manner 

(Lee et al., 2012; Yun et al., 2014). Here, we examined the 

effect of prenatal DEX treatment on fetal skeletal develop- 

ment on day 18.5. Developmental defects of the axial 

skeleton found in this model will provide an insight into 

the long-lasting effect of prenatal GC on the growth and 

the maturity of the skeleton. 

 

MATERIALS AND METHODS 

Experimental animals and injection of DEX 

All animals were handled according to the guideline for 

the Care and Use of Laboratory Animals of Yonsei 

University College of Medicine. The protocol for obtaining 

embryos was approved by the Committee on Animal 

Research at Yonsei University College of Medicine. Pregnant 

ICR mice were ordered from Orient Biology (Sungnam, 

Korea). DEX administration was performed as previously 

described (Lee et al., 2012). Briefly, either saline (control 

group) or dexamethasone 21-phosphate disodium salt (1 mg/ 

kg or 10 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) was 

injected on days 7.5, 8.5 and 9.5 of gestation intraperitoneally. 

Embryo extraction and skeleton preparation 

The mice were sacrificed at 10 a.m. on gestational day 

18.5 using a carbon dioxide chamber. Embryos were 

extracted from the womb and the body weight and CRL 

(Crown-rump length) measured. Each sample's skin and 

internal organs in the chest cavity and lower trunk were 

removed after being incubated at 70℃ for 1 hour. They 

were fixed in 95% ethanol for 2~4 days and transferred to 

glass bottles containing acetone and kept overnight. Each 

sample was washed and stained with 0.03% Alcian Blue 

solution (Sigma) overnight. After being put in 95% ethanol 

for 3 hours, the embryos were stored in 2% potassium 

hydroxide in distilled water (DW) for 24 hours and stained 

with 0.005% Alizarin Red solution (Sigma) for 16 hours. 

The samples were then cleared in 1% potassium hydroxide 

in 20% glycerol for 2 days and transferred to increasingly 

concentrated glycerol solutions (50% to 80% glycerol in 

95% ethanol solution for 1 day each). 

Microscope observation and identification 

The samples were observed using a light microscope 

(Olympus SZX10) under varying degrees of brightness and 

hue. Each spinal column was identified using dorsal and 

ventral views of the trunk and several anatomical landmarks 

(T6 and T7 ribs conjoin near the end of the sternum, 

vertebral columns after caudal 4 lack dorsal processes, etc.). 

Embryos exposed to DEX were compared to specimens of 

the control group for abnormalities in the skeletal structure. 

 

RESULTS 

Effect of prenatal DEX treatment on fetal vertebral 

column 

A total of 36 embryos (18 embryos from 3 mothers with 

saline, and the same number with 1 mg/kg of DEX (DEX1) 

and 10 mg/kg of DEX (DEX10), respectively) were pro- 

cessed for skeletal preparation at gestational day 18.5. As 

far as the skeletal system is concerned, all the structures in 

the vertebral column including cervical, thoracic, lumbar, 

sacral and caudal were examined and overall no significant 

difference was observed except on the region between the 

last thoracic (T13) and the first lumbar (L1) vertebrae (Fig. 

1A and B). Table 1 summarized the axial skeletal alterations 

observed in control and DEX group. In our experimental 

groups, low dose of DEX treatment (DEX1) did not cause 

any changes in skeletal formation. Contrarily, out of 18 

embryos in the DEX10 group, 6 embryos (33%) showed a 
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pair of ectopic ribs on one or both side of L1 spinal 

column indicating an L1 to T13 transformation. In addition, 

1 embryo (6%) showed less developed T13 ribs. The ectopic 

L1 ribs were shorter than T13 ribs and varied from a stump-

like growth to a pair of bony appendages with cartilaginous 

ends (Fig. 1C and D). The upper thoracic ribs of these 

samples were similar to that of control group embryos. 

Deformed T13 ribs were shorter in length compared to 

those of control group embryos (Fig. 1E). In this embryo, 

upper ribs such as T10, 11 and 12 also seemed to be less 

developed, as their costal cartilages were shorter and less 

curved around the chest cavity than those of control group 

embryos. There was no sex preference on these phenotypes. 

Effect of prenatal DEX treatment on the protrusion of 

xiphoid process 

The xiphoid process, indicated in Fig. 2A, is a small 

cartilaginous process (extension) of the lower part of the 

sternum. Examination of the sternum have revealed that 

the xiphoid process in embryos from experimental groups 

was bent more outward or inward compared to those of 

control group (Fig. 2B-D and Fig. 3). The y-axis presented 

in Fig. 3 was an angle between the sternum and the 

protruding end of the xiphoid process in each embryo. The 

individuals belonging to the upper outside from the strong 

dotted line (Mean + SD) in the graph were the embryos 

possessing xiphoid process that points outward from of the 

rib cage which bent the sternum into a convex shape (Fig. 

2C). In contrast, the ones belonging to the lower outside 

from the weak dotted line (Mean - SD) showed inward 

pointing xiphoid process that bent the sternum into a 

concave shape (Fig. 2D). Female embryos in control saline 

group were distributed almost equally on the outside or 

within the criteria 'Mean ± SD'. Whereas, large proportion 

of female embryos in DEX1 group (8 out of 9 females) 

Table 1. Axial skeletal abnormalities found in embryos exposed 
to prenatal DEX or saline 

Treatments Axial skeletal malformation 

Saline (n=18) L1 to T13 (n=2) 11% 

DEX1 (n=18) None  0% 

DEX10 (n=18) L1 to T13 (n=6) 33% 

Abnormal T13 (n=1)  6% 

A 

C 

B

D E

Fig. 1. Axial skeletal abnormalities found in mouse embryos after prenatal exposure to DEX. (A) Overview of skeletons with normal
number of thoracic, lumbar, sacral and caudal vertebra. (B) Dorsal view showing normal thoracic vertebrae and rib attachments. (C-D)
Anterior transformation of the first lumbar (L1) vertebra in the 13th thoracic (T13) vertebra (C: one side, D; both sides). In (E), the thirteenth
rib on T13 was degenerated. 
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role of GC in regulating bone formation, GCs have been 

implicated in the induction of osteoblast differentiation and 

maintenance of bone homeostasis on a physiological level 

(Eijken et al., 2006; Henneicke et al., 2014). However, 

depending on GC dose and duration of experimental con- 

dition, as well as in the clinical use of GC for therapy, excess 

GC has been frequently caused negative effects, such as 

bone loss or osteoporosis (Weinstein 2011; Henneicke et al., 

2014). Similar to the undesirable results of excess GC on 

bones during the postnatal and adult stages, prenatal GC 

may also affect skeletal formation during fetal stages and 

can be programmed. 

Maternal restraint stress or DEX exposure in animal 

models resulted in vertebral and sternal abnormalities, and 

the retardation of somite and limb formation (Śliwa et al., 

2006; Lee et al., 2008; Choe et al., 2011). Several human 

studies have demonstrated that prenatal GC treatment led 

to a transient suppression of the levels of carboxy-terminal 

propeptide of type I collage (PICP) and carboxy-teminal 

telopeptide of type I collagen (ICTP), a measure to assess 

the rate of bone formation and resorptive, respectively, but 

with no long-term impact (Korakaki et al., 2007; Korakaki 

et al., 2011). However, interestingly enough, Gale et al. 

have shown that genetic and/or intrauterine environmental 

factors influenced the fetal growth trajectory and suggested 

an evidence that low birth weight was associated with lower 

adult bone and muscle mass, and the risk of osteoporosis in 

later life (Gale et al., 2001). Therefore, the effects of prenatal 

GC or other type of stress on bone formation during fetal 

development and potential impacts over the whole life need 

to be investigated by specific details. 

The vertebrate axial skeleton is composed of cervical, 

thoracic, lumbar, sacral and caudal regions, with vertebrae 

in each region. The whole process of the vertebrae formula, 

from the somite differentiation to the segmentation and the 

formation of the axial skeleton, is controlled by a variety of 

molecules, including transcription factors, like the members 

of the Hox and Cdx gene family, and signaling molecules, 

such as Gdf11, FGF, retinoid acid (RA) or WNT signaling 

(Mallo et al., 2009). Although there has been no report 

showing direct connections between the genesis of segmental 

identity and the GC signaling, GC may affect in the develop- 

mental process of axial skeleton formation by affecting other 

signaling pathways or regulating expression of transcription 

factors. An evidence showing functional interaction between 

GC and RA signaling and the resulting effect on Hox gene 

expression has been demonstrated (Subramaniam et al., 

2003). Furthermore, several Hox genes, such as Hoxa5, a9, 

and c10, has been proposed as GC-regulated genes, in 

mouse skin (Donet et al., 2008). We have been previously 

demonstrated that prenatal DEX exposure induces dysregu- 

lation of Hox gene expression in mouse embryos (Kim et 

al., 2011). The similarities of the prenatal DEX-induced 

phenotypes on skeleton observed in this study, e.g. an 

ectopic ribs on the L1 vertebrae, with those found in mutants 

for the Hox paralogous groups 8-10 (Favier and Dolle 1997; 

van Den Akker et al., 2001; Wellik and Capecchi 2003) 

suggest possible molecular mechanisms that underlie the 

detrimental effects of prenatal DEX on skeletal development. 

Although there were 2 embryos showing supernumerary 

ribs on the L1 in control group, natural occurrence of the 

homeotic transformation have been also found at low 

frequencies within a wild-type population in other studies 

(del Mar Lorente et al., 2000; van Den Akker et al., 2001; 

Lorente et al., 2006). Therefore, we do not think that saline 

injection only caused significant changes in axial skeleton. 

Table 2. Number of embryos belonging to the designated area depending on the angle between the sternum and the protruding end of the 
xiphoid process 

 
Female Male 

Saline Dex1 Dex10 Saline Dex1 Dex10 

Within Mean ± SD of saline group 5 (56) 1 (11) 6 (50) 8 (89) 5 (56) 8 (67) 

Outside of Mean ± SD of saline group 4 (44) 8 (89) 6 (50) 1 (11) 4 (44) 3 (33) 

The number in parentheses represents a percentage of embryo of a given population. 
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Xiphoid process is a small cartilaginous extension of the 

lower part of the sternum which is usually ossified in the 

adult human. The abnormal forward or inward curvature of 

xiphoid process are not detrimental to the overall health 

status, but may contribute to the anatomically significant 

chest deformities, such as pectus excavatum (PE) and pectus 

carinatum (PC). Patients with PE and PC deformities may 

feel uncomfortable strains and are unsatisfied with a 

cosmetic deformity; however, depending on severity, those 

can impair cardiac and pulmonary function that will be 

considered for surgical correction (Fokin et al., 2009; 

Robicsek et al., 2009). Although these type of abnormalities 

are congenital, neither the systematic analysis of the genetic 

and molecular mechanisms nor the effects of the early 

uterine environment have been identified. Based on our 

observation, the angle divergence between the sternum and 

the protruding end of the xiphoid process was bigger in 

female embryos than in male embryos. Sex differences in 

the effect of prenatal glucocorticoid exposure or stress have 

now been issued in this field (Bale 2011; Glover and Hill 

2012). By the time, the focus of investigation was mostly 

on sex specific differences in placental function (Cuffe et al., 

2011; O'Connell et al., 2011) or sex-biased hypothalamic-

pituitary-adrenal (HPA) axis activities (Mueller and Bale 

2008; Garcia-Caceres et al., 2010), but there was no report 

about sex differences in the effect of prenatal stress on the 

skeletal development in fetuses. Our results showing a 

sex-biased variation in the protrusion of xiphoid process by 

prenatal DEX exposure could have important implications 

for the causative effect of uterine environment to the skeletal 

deformities. 

Unexpectedly, it was found that administration of high 

dose of DEX showed less angle change than the low dose 

of DEX did, as shown in Table 2 and Fig. 3. In a similar 

way, embryonic weight and size were less affected by 

prenatal administration of DEX10 than DEX1 (Yun et al., 

2014). Although it is not clear how embryos strive for 

survival, there should be some complementary mechanisms 

to overcome unfavorable intrauterine conditions, which could 

be one reason for less effect with high dose of DEX. We 

have already demonstrated that a subgroup of placentas 

from DEX10-injected mother was enlarged with structural 

abnormalities (Lee et al., 2012). Placentomegaly has been 

also observed in maternally stressed animal models and 

human, and therefore, it was regarded as a complementary 

survival strategy to adapt to an adverse condition (Faichney 

and White 1987; Lumey 1998; McCrabb et al., 1992; 

Tegethoff et al., 2010). 

In summary, our results demonstrate that prenatal expo- 

sure to DEX in mice induces fetal skeletal malformations. 

Although all of the observable skeletal phenotypes in 

prenatal stress models of previously published studies are 

not identical, it should be determined by the timing and the 

amount of fetal exposure to stress, and by the genetic 

susceptibility. Therefore, all outcomes from individual studies 

might provide valuable information and understanding how 

prenatal maternal stress can affect a developing fetus. Further 

investigations on the molecular basis behind the phenotypes 

would be helpful to evaluate the effects on fetal skeletal 

system. 
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