• Title/Summary/Keyword: Device-to-Device

Search Result 25,316, Processing Time 0.056 seconds

Micromachinng and Fabrication of Thin Filmes for MEMS-infrarad Detectors

  • Hoang, Geun-Chang;Yom, Snag-Seop;Park, Heung-Woo;Park, Yun-Kwon;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jong-Hoon;Moonkyo Chung;Suh, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In order to fabricate uncooled IR sensors for pyroelectric applications, multilayered thin films of Pt/PbTiO$_3$/Pt/Ti/Si$_3$N$_4$/SiO$_2$/Si and thermally isolating membrane structures of square-shaped/cantilevers-shaped microstructures were prepared. Cavity was also fabricated via direct silicon wafer bonding and etching technique. Metallic Pt layer was deposited by ion beam sputtering while PbTiO$_3$ thin films were prepared by sol-gel technique. Micromachining technology was used to fabricate microstructured-membrane detectors. In order to avoid a difficulty of etching active layers, silicon-nitride membrane structure was fabricated through the direct bonding and etching of the silicon wafer. Although multilayered thin film deposition and device fabrications were processed independently, these could b integrated to make IR micro-sensor devices.

  • PDF

A Study of MTTF improvement of Thermal Device cryogenic-cooler (열상장비 냉각기의 MTTF 개선연구)

  • Jung, Yunsik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.252-257
    • /
    • 2018
  • In this paper, we propose a mean time to failure (MTTF) to improve the solution for a cryogenic cooler, which is an important part of a cooled thermal device. Common electronic devices have a high possibility of failure due to various environmental factors, such as temperature and humidity. But some special devices (such as thermal devices) are designed to overcome environmental factors. The most affected part of a cooled thermal device's MTTF is the cryogenic cooler. The MTTF of a cryogenic cooler is affected by the device's internal heat. Therefore, if the device's internal heat is reduced, the cryogenic cooler's MTTF increases. From the present device's internal heat simulation, we analyze the improvement method of the device. The proposed improvement method's effectiveness is verified by simulation and MTTF calculation.

Study of the electrical propety for $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$((001) with a direct gap (직접천이 띠간격을 갖는 $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$(001)의 전기적 특성 연구)

  • 박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.989-995
    • /
    • 2000
  • G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ is a very promising material for the high-speed device due to the fact that electron and hole mobilities for the strained G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ are greatly enhanced. Because G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ has a direct band gap for the proper combination of x and y, it can be applied to the optoelectronic device. Therefore, the study of the electrical property for G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$(001) with a direct energy gap is needed. G $e_{1-x}$ S $n_{x}$ layer can not be grown thickly due to the large difference of lattice constants. This fact prefers the structure of the device where electrons and holes move in the plane direction. The transverse mobilities of electron and hole for G $e_{0.8}$S $n_{0.2}$Ge(001) are 2~3 times larger than those for Ge/Ge/ sub0.8/S $n_{0.2}$(001). Therefore, G $e_{0.8}$S $n_{0.2}$Ge(001) is expected to be better than Ge/G $e_{0.8}$S $n_{0.2}$(001) for the development of the high-speed device.h-speed device.device.h-speed device. device.

  • PDF

Design, Fabrication, and Application of a Microfluidic Device for Investigating Physical Stress-Induced Behavior in Yeast and Microalgae

  • Oh, Soojung;Kim, Jangho;Ryu, Hyun Ryul;Lim, Ki-Taek;Chung, Jong Hoon;Jeon, Noo Li
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose: The development of an efficient in vitro cell culture device to process various cells would represent a major milestone in biological science and engineering. However, the current conventional macro-scale in vitro cell culture platforms are limited in their capacity for detailed analysis and determination of cellular behavior in complex environments. This paper describes a microfluidic-based culture device that allows accurate control of parameters of physical cues such as pressure. Methods: A microfluidic device, as a model microbioreactor, was designed and fabricated to culture Saccharomyces cerevisiae and Chlamydomonas reinhardtii under various conditions of physical pressure stimulus. This device was compatible with live-cell imaging and allowed quantitative analysis of physical cue-induced behavior in yeast and microalgae. Results: A simple microfluidic-based in vitro cell culture device containing a cell culture channel and an air channel was developed to investigate physical pressure stress-induced behavior in yeasts and microalgae. The shapes of Saccharomyces cerevisiae and Chlamydomonas reinhardtii could be controlled under compressive stress. The lipid production by Chlamydomonas reinhardtii was significantly enhanced by compressive stress in the microfluidic device when compared to cells cultured without compressive stress. Conclusions: This microfluidic-based in vitro cell culture device can be used as a tool for quantitative analysis of cellular behavior under complex physical and chemical conditions.

A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester (벌집형 압전 발전 소자의 구동방식에 따른 출력 특성)

  • Jeong, Seong-Su;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

A Study of Orthognathic Surgical Guides with Two-stage Split Path (2단 절개 형태를 가지는 악교정 수술 장치 연구)

  • Min Uk, Kim;Chung Hwan, Park;Ji Hyoung, Rho;Eui Sung, Jung;Young Sang, Park;Dong Guk, Kim;Yohan, Seo;Young Jea, Woo;Jong Min, Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.382-389
    • /
    • 2022
  • In this study, the accuracy of the orthognathic surgical guides with single-stage split path was upgraded to realize orthognathic surgical guides with two-stage split path and simulated surgery was performed to verify its accuracy. As a result, the average error distance between the simulation model and the scan model was + 0.289 / - 0.468 mm (standard deviation 0.128), which was confirmed to be within ± 0.5 mm, which is a clinically acceptable level. Also, there was no significant difference compared with the average value of + 0.313 / - 0.456 mm (average standard deviation 0.106) of the conventional single-stage split path type device. It is judged that the use of this device can contribute to the reduction of surgical time and increase in accuracy since a separate finishing operation for bone preparation is unnecessary.

Device Applications of Graphene and Their Challenges

  • Lee, B.H.;Hwang, H.J.;Yang, J.H.;Baek, E.J.;Kang, S.C.;Lee, Y.G.;Kang, C.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.114-114
    • /
    • 2012
  • Even though graphene was introduced with a great hope to replace silicon in future, small (or zero) band gap and poor stability have become major challenges in graphene electronics. Especially, rectification and amplification function which are the elemental functions of silicon device, is very difficult to implement without a bandgap. However, the graphene can still be used in many other device applications if the merits of graphene are creatively utilized. For example, graphene can be applied to almost any kind of substrate. Its conductivity can be varied in some degree using electric field, charge dipole, attached molecules, and many other ways. Recently, graphene stacked with ferroelectric materials or piezoelectric materials has been actively studied for various device applications. In this talk, various device applications of graphene using hybrid stack or novel device structure will be introduced and their prospect will be discussed.

  • PDF

A Preliminary Study of Quality Certification System for Geo-Spatial Information Device (공간정보 기기 품질인증을 위한 기초연구)

  • Kim, Jae-Myeong;Choi, Yun-Soo;Seo, Jae-Pil;Chang, Eun-Mi
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 2011
  • Countries all over the world have been operating various certification systems to protect their consumers, and these systems have become trade barriers between countries. Also, KS and KCC were not designed to reflect characteristics of Geo-Spatial Information Device. The purpose of this study was to derive the plan of Quality Certification System for Geo-Spatial Information Device through the analyses of the existing Quality Certification System. The results of this study were as follows. Firstly, we defined the concept of Quality Certification System for Geo-Spatial Information Device. Secondly, we set the boundary, factors and process of Quality Certification System for Geo-Spatial Information Device through classifying it in detail. Lastly, we suggested about fundamental concept of Quality Certification System for Geo-Spatial Information Device a the analyses of the existing Quality Certification System.

Effects of NMES and Horseback Riding Using a Robotic Device on the Trunk Muscle Activity and Gross Motor Function in Children with Spastic Diplegia

  • Park, Shin-Jun;Youn, Pong-Sub
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.4
    • /
    • pp.123-128
    • /
    • 2018
  • Purpose: This study examined the effects of neuromuscular electrical stimulation (NMES) and horseback riding using a robotic device on the trunk muscle activity and gross motor function in children with spastic diplegia. Methods: Children with spastic diplegia were divided into two groups: an experimental group (NMES and horseback riding using a robotic device [n=10]) and a control group (placebo NMES and horseback riding using a robotic device [n=10]). Each group received general physical therapy and occupational therapy. Each intervention involved the administration of NMES for 15 minutes and horseback riding using robotic device therapy for 15 minutes three times a week for 4 weeks. The evaluation included both the rectus abdominis muscles (RA), external oblique muscles (EO), thoracic paraspinal muscles (TP), and lumbar paraspinal muscles (LP) activity and GMFM. Results: The RA, EO, TP, and LP muscle activity, GMFM C, D, and E were increased significantly in the experimental and control groups. A significant increase in both the TP muscle activity and GMFM D was observed in the experimental group compared to the control group. Conclusion: This study showed that horseback riding using a robotic device is an effective intervention for trunk muscle activity and GMFM in children with spastic diplegia. However, if NMES is added to the back muscles, it is possible to further increase the thoracic paraspinal muscle activity and standing ability.