• Title/Summary/Keyword: Deviatoric stress

Search Result 64, Processing Time 0.027 seconds

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

Analysis on Creep of Concrete under Multiaxial Stresses Using Microplane Model (미세평면 모델을 적용한 다축응력 상태의 콘크리트 크리프 분석)

  • Kwon Seung-Hee;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.195-204
    • /
    • 2004
  • Poisson's ratio due to multiaxial creep of concrete reported by existing experimental works was controversial. Poisson's ratio calculated from measured strain is very sensitive to small experimental error. This sensitivity make it difficult to find out whether the Poisson's ratio varies with time or remain constant, and whether the Poisson's ratio has different value with stress states or not. A new approach method is needed to resolve the discrepancy and obtain reliable results. This paper presents analytical study on multiaxial creep test results. Microplane model as a new approach method is applied to optimally fitting the test data extracted from experimental studies on multiaxial creep of concrete. Double-power law is used as a model to present volumetric and deviatoric creep evolutions on a microplane. Six parameters representing the volumetric and deviatoric compliance functions are determined from regression analysis and the optimum fits accurately describe the test data. Poisson's ratio is calculated from the optimum fits and its value varies with time. Regression analysis is also performed assuming that Poisson's ratio remains constant with time. Four parameters are determined for this condition, and the error between the optimum fits and the test data is slightly larger than that for six parameter regression results. The constant Poisson's ratio with time is obtained from four parameter analysis results and the constant value can be used in practice without serious error.

A Study on the Shear Characteristics of Adhesives in Primary Mirror Supports of Satellite Camera (인공위성 카메라 주반사경 지지부에 적용되는 접착제의 전단 특성 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.808-815
    • /
    • 2007
  • The optical performance of the mirror fur satellite camera is highly dependent on the adhesive properties between the mirror and its support. Therefore, in order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Also the experiment should be performed in circumstances similar to real manufacturing process of mirror, because extra factors such as size effects, the adhesion effects of primer and reactions between adhesive and primer affect the properties of adhesive regions. In this research shear moduli of the adhesives are determined by using a single lap adhesively bonded joint. For the shear tests, several temperatures have been selected from $-20^{\circ}C$ to $55^{\circ}C$ which is operating temperature range of the adhesive. In the case of linear behavior materials, shear moduli are calculated through a linear curve fitting. Shear stress-strain relation is obtained by using an exponential curve fitting for material which shows non-linear behavior. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics and adaptability of the adhesives are discussed regarding their temperature sensitivity.

Finite Element Analysis of Silo Type Underground Opening for LILW Disposal Facility (사일로 구조형식 중저준위 방폐물 처분동굴의 유한요소 해석)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.339-345
    • /
    • 2021
  • Finite element analysis of the silo type underground opening for low- and intermediate-level radioactive waste (LILW) disposal facilities in Korea is presented in this study. The silo wall is circular and the roof is made up of domes. The silo wall is 25 meters in diameter, 35 meters in height, and the dome is 30 meters in diameter and 17.4 meters in height, and it is located at -80 meters to -130 meters at sea level. Although six silos have been constructed in the first stage and are in operation, only one silo was considered in this study. The two-dimensional axial symmetric finite element model, as well as the three-dimensional finite element model were made using the computer program SMAP-3D. Generalized Hoek and Brown Model was used for the numerical analyses. The finite element analysis of the silo type underground opening was carried out under various lateral pressure coefficients (defined as ratio of average horizontal to vertical in-situ stress), and the numerical results of these analyses were examined.

Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses (절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.271-285
    • /
    • 2020
  • In this study, a numerical experiment related to the stress-strain analysis was performed on 3-D discrete fracture network(DFN) systems based on the distinct element method to evaluate the effect of joint geometry on deformability of jointed rock masses. Using one or two joint sets with deterministic orientation, a total of 12 3-D DFN blocks having 10m cube domain were generated with different joint density and size distribution. Directional deformation modulus of the DFN cube blocks were estimated along the axis directions of 3-D cartesian coordinate. In addition, deviatoric stress directions were chosen at every 30° of trend and plunge in 3-D for some DFN blocks to examine the variability of directional deformation modulus with respect to joint geometry. The directional deformation modulus of the DFN block were found to reduce with the increase of joint size distribution. The increase in joint density was less likely to have a significant effect on directional deformation modulus of the DFN block in case of the effect of rock bridges was relatively large because of short joint size distribution. It, however, was evaluated that the longer the joint size, the increase in the joint density had a more significant effect on the anisotropic deformation modulus of the DFN block. The variation of the anisotropic deformation modulus according to the variations in joint density and size distribution was highly dependent on the number of joint sets and their orientation in the DFN block. Finally, this study addressed a numerical procedure for stress-strain analysis of jointed rock masses considering joint geometry and discussed a methodology for practical application at the field scale.

Permanent Deformation Properties of Porous Pavement Modified by Pyrolysis Carbon Black (열분해 카본블랙을 이용한 배수성 아스팔트 혼합물의 소성변형 특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3888-3893
    • /
    • 2014
  • The number of waste tires is increasing. One effective recycling method is the pyrolysis of waste tires. Using the pyrolyzed carbon black from waste tires, the characteristics of permanent deformation for PA-13mm porous mixture were evaluated. The confining pressure of 138 kPa and deviatoric stress of 551 kPa were adopted. The testing temperature was $45^{\circ}$ and 50 gyrations of the gyratory compactor was used to simulate the medium traffic level. The mixture modified by 10% PCB showed the largest Marshall Stability of 3.41 kN. The stability of the mixtures with PCB was 50% higher than that of mixture without PCB. The limited laboratory test showed that the use of PCB in a porous pavement decreases the permanent deformation and will be an effective alternative method to reducing the permanent deformation of a porous pavement.

Evaluation of Resilient Modulus for Reinforced Trackbed using Large Triaxial Tests (대형삼축압축시험을 이용한 강화노반재료의 회복탄성계수 평가)

  • Lee, Sung Jin;Lee, Jin Wook;Lee, Seong Hyeok;Sagong, Myung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.415-422
    • /
    • 2014
  • Reinforced trackbeds are an important layer that has a significant effect on the deformation of the track, therefore, a deeper understanding of reinforced trackbeds is necessary. In this paper, we conduct a large triaxial test in order to evaluate the resilient modulus ($M_R$) of reinforced trackbed materials through considering several factors such as the grain size distribution (GSD) and loading conditions. It is identified that the maximum size of the particle, GSD, and compacted water content affect the $M_R$ but the loading frequency does not. Because these tests are performed with consideration of the field environment, the test results are useful for analyzing tracks including reinforced trackbeds. The data are limited to evaluating the parameters of $M_R$ model; however the parameters of the deviatoric and bulk stress models that can be used in various loading conditions are proposed.

Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles

  • Mahzad Esmaeili-Falak;Reza Sarkhani Benemaran
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.583-600
    • /
    • 2023
  • The resilient modulus (MR) of various pavement materials plays a significant role in the pavement design by a mechanistic-empirical method. The MR determination is done by experimental tests that need time and money, along with special experimental tools. The present paper suggested a novel hybridized extreme gradient boosting (XGB) structure for forecasting the MR of modified base materials subject to wet-dry cycles. The models were created by various combinations of input variables called deep learning. Input variables consist of the number of W-D cycles (WDC), the ratio of free lime to SAF (CSAFR), the ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviatoric stress (σd). Two XGB structures were produced for the estimation aims, where determinative variables were optimized by particle swarm optimization (PSO) and black widow optimization algorithm (BWOA). According to the results' description and outputs of Taylor diagram, M1 model with the combination of WDC, CSAFR, DMR, σ3, and σd is recognized as the most suitable model, with R2 and RMSE values of BWOA-XGB for model M1 equal to 0.9991 and 55.19 MPa, respectively. Interestingly, the lowest value of RMSE for literature was at 116.94 MPa, while this study could gain the extremely lower RMSE owned by BWOA-XGB model at 55.198 MPa. At last, the explanations indicate the BWO algorithm's capability in determining the optimal value of XGB determinative parameters in MR prediction procedure.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

Strength and Deformation Characteristics on Stabilized Pavement Geomaterials(I): Laboratory Test (안정처리된 도로하부 지반재료의 강도 및 변형특성(I): 실내실험)

  • Park, Seong-Wan;Ji, Jong-Keun;Park, Hee-Mun;Ohm, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 2008
  • The stabilization techniques in the pavement foundations have advantages in increasing pavement performance and reducing pavement thickness. By mixing the geomaterials and stabilizer, the economical and structurally sound layer can be added in the pavement system. Until now, these techniques have been applied in the field empirically and the design criteria for stabilization has not been established. The purposes of this paper are to evaluate the mechanistic properties of stabilizers used for geomaterials and determine the type and optimum amount of stabilizer for each technique. The unconfined compressive testing and repeated load resilient modulus test were conducted on the coarse grained soils mixed with various types of stabilizer to investigate the strength and deformation characteristics of stabilized geomaterials. It is found from the test that the unconfined compressive strength of stabilized geomaterials is more than ten times higher than that of gradation modified geomaterials. The resilient modulus of stabilized geomaterials increases by $6{\times}10$ times compared to the original soils and tends to increase with increase of volumetric and deviatoric stress, and amount of stabilizer.

  • PDF