• Title/Summary/Keyword: Deterministic models

Search Result 228, Processing Time 0.028 seconds

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Optimal Design of Press-Fitted Axle Shaft Considering Stress Relief (압입축의 손상저감을 위한 최적설계 연구)

  • Ko, Jaechun;Lee, Jongsoo;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.859-864
    • /
    • 2013
  • Creation of a stress relief groove is a fairly simple yet high-performance method. During the application of this method, it is important to consider the location and size of the groove in order to achieve better performance. Consequently, this research proposes an approach for optimizing the application of the stress relief groove method to a press-fitted assembly. In a boss design, the position and diameter of the groove are configured as design variables and the design of experiments is applied. Based on this information, a 3D model is built and analyzed using the finite element analysis software ABAQUS. Meta-models are created using back-propagation neural networks. Then, deterministic optimization results obtained from a genetic algorithm are compared with the results of the finite element analysis. The temperature sensitivity of the optimized model is analyzed, and finally, reliability-based design optimization is conducted for enhancing the design quality.

Seismic assessment of R/C residential buildings with infill walls in Turkey

  • Korkmaz, Kasim Armagan;Kayhan, Ali Haydar;Ucar, Taner
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • In 1999 Marmara and 2011 Van earthquakes in Turkey, majority of the existing buildings either sustained severe damage or collapsed. These buildings include masonry infill walls in both the interior and exterior R/C frames. The material of the masonry infill is the main variant, ranging from natural stones to bricks and blocks. It is demanding to design these buildings for satisfactory structural behavior. In general, masonry infill walls are considered by its weights not by interaction between walls and frames. In this study, R/C buildings with infill walls are considered in terms of structural behavior. Therefore, 5 and 8-story R/C buildings are regarded as the representative models in the analyses. The R/C representative buildings, both with and without infill walls were analyzed to determine the effects of structural behavior change. The differences in earthquake behavior of these representative buildings were investigated to determine the effects of infill walls leading structural capacity. First, pushover curves of the representative buildings were sketched. Aftermath, time history analyses were carried out to define the displacement demands. Finally, fragility analyses were performed. Throughout the fragility analyses, probabilistic seismic assessment for R/C building structures both with and without infill walls were provided. In this study, besides the deterministic assessment methodology, a probabilistic approach was followed to define structural effect of infill walls under seismic loads.

Deterministic Fracture Mechanics Analysis of Nuclear Reactor Pressure Vessel Under Rot Leg Leak Accident (고온관 누설에 의한 가압열충격 사고시 원자로 용기의 건전성 평가를 위한 결정론적 파괴역학 해석)

  • Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Park, Youn-Won;Jhung, Myung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2219-2227
    • /
    • 2002
  • In a nuclear power plant, reactor pressure vessel (RPV) is the primary pressure boundary component that must be protected against failure. The neutron irradiation on RPV in the beltline region, however, tends to cause localized damage accumulation, leading to crack initiation and propagation which raises RPV integrity issues. The objective of this paper is to estimate the integrity of RPV under hot leg leaking accident by applying the finite element analysis. In this paper, a parametric study was performed for various crack configurations based on 3-dimensional finite element models. The crack configuration, the crack orientation, the crack aspect ratio and the clad thickness were considered in the parametric study. The effect of these parameters on the maximum allowable nil-ductility transition reference temperature ($(RT_{NDT})$) was investigated on the basis of finite element analyses.

Component Procurement Planning with Demand Uncertainty Under Assemble-to-Order Environments (불확실한 수요를 갖는 주문 조립 환경에서의 부품 조달 계획에 관한 연구)

  • Lee, Geun-Cheol;Kim, Jung-Ug;Hong, Jung Man
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.121-134
    • /
    • 2012
  • In this study, we consider a component procurement planning problem where the procurement amounts of components are determined under assemble-to-order systems with demand uncertainty. In the problem, procurement amount of each component is decided before the demands of finished products are known and after the demands are identified the assembly amounts of the finished products are decided. In this study, the objective function of the problem is minimizing the total costs which are composed of purchase and inventory costs of the components and the backorder costs of the finished products. We assume that the uncertain demand information is given as multiple scenarios of the demands, and we propose procurement planning methods based on stochastic models which considering the multiple demand scenarios. To evaluate the performances of the proposed methods, computational experiments were carried out on the proposed methods as well as benchmarks including a method based on deterministic mathematical model and a heuristic. From the results of the computational tests, the superiorities of the proposed methods were shown.

Analysis of Partial Discharge Phenomena by means of CAPD (CAPD기법을 이용한 부분방전 현상 해석에 관한 연구)

  • Kim, Sung-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.939-944
    • /
    • 2002
  • PD phenomena can be regarded as a deterministic dynamical process where PD should be occurred if the local electric field be reached to be sufficiently high. And thus, its mathematical model can be described by either difference equations or differential equations using several state variables obtained from the time sequential measured data of PD signals. These variables can provide rich and complex behavior of detectable time series, for which Chaos theory can be employed. In this respect, a new PD pattern recognition method is proposed and named as 'Chaotic Analysis of Partial Discharges (CAPD)' for this work. For this purpose, six types of specimen are designed and made as the models of the possible defects that may cause sudden failures of the underground power transmission cables under service, and partial discharge signals, generated from those samples, are detected and then analyzed by means of CAPD. Throughout the work, qualitative and quantitative properties related to the PD signals from different defects are analyzed by use of attractor in phase space, information dimensions ($D_0$ and D2), Lyapunov exponents and K-S entropy as well. Based on these results, it could be pointed out that the nature of defect seems to be identified more distinctively when the CAPD is combined with traditional statistical method such as PRPDA. Furthermore, the relationship between PD magnitude and the occurrence timing is investigated with a view to simulating PD phenomena.

  • PDF

Bootstrap estimation of long-run variance under strong dependence (장기간 의존 시계열에서 붓스트랩을 이용한 장기적 분산 추정)

  • Baek, Changryong;Kwon, Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.449-462
    • /
    • 2016
  • This paper considers a long-run variance estimation using a block bootstrap method under strong dependence also known as long range dependence. We extend currently available methods in two ways. First, it extends bootstrap methods under short range dependence to long range dependence. Second, to accommodate the observation that strong dependence may come from deterministic trend plus noise models, we propose to utilize residuals obtained from the nonparametric kernel estimation with the bimodal kernel. The simulation study shows that our method works well; in addition, a data illustration is presented for practitioners.

Efficient Deterministic Inventory System in VMI System of the Discount Retailer (대형할인매장의 VMI 시스템을 위한 효율적인 재고관리 시스템)

  • 백시현;방인홍;김내헌
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.139-142
    • /
    • 2000
  • Excessive inventories result from poor scheduling, planning, and controls, and the converse is also same. With adequate inventories, supplies can transport products to customers in time without excessive delivering cost. So efficient inventory control is vital for successful logistics management operation. In terms of mass discount retailers such as Wal-Mart, Carrefour, E-Mart, and so on, they require the high-quality services such as a small-amount and a high-frequency delivery because of having small warehouse and wanting possess much more various goods. In the opposite, manufactures ask mass discount retailer to delivery more lots of goods because of reducing the number of deliveries. It goes without saying that both wish to prevent stockout(lack of inventories). Usually, mass discount retailers have the power more than manufactures. This paper proposed how to manage inventory and how many to order in view of the TPLC and supplier. We considered the economic order quantity models for multiple items so as to prevent urgent deliveries as possible as. And the tradeoff stockout costs and delivering costs.

  • PDF

A MULTIOBJECTIVE MODEL OF WHOLESALER-RETAILERS' PROBLEM VIA GENETIC ALGORITHM

  • MAHAPATRA NIRMAL KUMAR;BHUNIA ASOKE KUMAR;MAITI MANORANJAN
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.397-414
    • /
    • 2005
  • In the existing literature, most of the purchasing models were developed only for retailers problem ignoring the constraint of storage capacity of retailers shop/showroom. In this paper, we have developed a deterministic model of wholesaler-retailers' problem of single product. The storage capacity of wholesaler's warehouse/showroom and retailers' showroom/shop are assumed to be finite. The items are transported from wholesaler's warehouse to retailers' Own Warehouse (OW) in a lot. The customer's demand is assumed to be displayed inventory level dependent. Demands are met from OW and that spaces of OW will immediately be filled by shifting the same amount from the Rented Warehouse (RW) till the RW is empty. The time duration between selling from OW and filling up its space by new ones from RW is negligible. According to relative size of the retailers' existing (own) warehouse capacity and the demand factors, different scenarios are identified. Our objectives are to optimize the cost functions of wholesaler and two retailers separately. To solve this problem, a real coded Genetic Algorithm (GA) with roulette wheel selection/reproduction, whole arithmetic crossover and non-uniform mutation is developed. Finally a numerical example is presented to illustrate the results for different scenarios. To compare the results of GA, Generalised Reduced Gradient Method has been used for the problem. Also, a sensitivity analysis has been performed to study the variations of the optimal average cost with respect to the different parameters.

ILL-VERSUS WELL-POSED SINGULAR LINEAR SYSTEMS: SCOPE OF RANDOMIZED ALGORITHMS

  • Sen, S.K.;Agarwal, Ravi P.;Shaykhian, Gholam Ali
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.621-638
    • /
    • 2009
  • The linear system Ax = b will have (i) no solution, (ii) only one non-trivial (trivial) solution, or (iii) infinity of solutions. Our focus will be on cases (ii) and (iii). The mathematical models of many real-world problems give rise to (a) ill-conditioned linear systems, (b) singular linear systems (A is singular with all its linearly independent rows are sufficiently linearly independent), or (c) ill-conditioned singular linear systems (A is singular with some or all of its strictly linearly independent rows are near-linearly dependent). This article highlights the scope and need of a randomized algorithm for ill-conditioned/singular systems when a reasonably narrow domain of a solution vector is specified. Further, it stresses that with the increasing computing power, the importance of randomized algorithms is also increasing. It also points out that, for many optimization linear/nonlinear problems, randomized algorithms are increasingly dominating the deterministic approaches and, for some problems such as the traveling salesman problem, randomized algorithms are the only alternatives.

  • PDF