• Title/Summary/Keyword: Deterministic analysis

Search Result 698, Processing Time 0.021 seconds

Reliability-Based Topology Optimization for Different Engineering Applications

  • Kharmanda, G.;Lambert, S.;Kourdi, N.;Daboul, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2007
  • The objective of this work is to integrate reliability analysis into topology optimization problems. We introduce the reliability constraint in the topology optimization formulation, and the new model is called Reliability-Based Topology Optimization (RBTO). The application of the RBTO model gives a different topology relative to the classical topology optimization that should be deterministic. When comparing the structures resulting from the deterministic topology optimization and from the RBTO model, the RBTO model yields structures that are more reliable than the deterministic ones (for the same weight). Several applications show the importance of this integration.

Optimum Design of the Brushless Motor Considering Parameter Tolerance (설계변수 공차를 고려한 브러시리스 모터 출력밀도 최적설계)

  • Son, Byoung-Ook;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1600-1604
    • /
    • 2010
  • This paper presents the optimum design of the brushless motor to maximize the output power per weight considering the design parameter tolerance. The optimization is proceeded by commercial software that is adopted the scatter-search algorithm and the characteristic analysis is conducted by FEM. The stochastic optimum design results are compared with those of the deterministic optimization method. We can verify that the results of the stochastic optimization is superior than that of deterministic optimization.

Identification of Chaos Phenomenon using the Classical Nonparametric Tests

  • Park, Young-Sun;Choi, Hang-Suk;Choi, Eun-Sun;Park, Moon-Il;Oh, Jae-Eung;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.95-113
    • /
    • 2006
  • The data resulting from a deterministic dynamic system may often appear to be random. However, it is important to distinguish a deterministic and a random processes for statistical analysis. In this paper, we propose a nonparametric test procedure to distinguish a noisy chaos from i.i.d. random process. The proposed procedure can be easily implemented by computer. We notice that the test is very effective to identify a low dimensional chaos process in some cases.

  • PDF

Jeju Jong-Nang Channel Code IV (제주 정낭(錠木) 채널 Code IV)

  • Park, Ju-Yong;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.73-80
    • /
    • 2016
  • We had introduced the backgrounds, history and physical meanings of Jong Nang in "Jeju Jong Nang Channel Code I, II and III". In "Jeju Jong Nang Channel Code II" paper, we have introduced practical the root of digital human binary coded Jong Nang communications as the wooden gate in Korea Jeju Island custom and investigated Jong Nang gatemodels as an approximation of the AWGN model. The objective was to find a deterministic model, which was accessible to analysis the capacity. Jong Nang communications mean the normal 3 rafters placed on two vertical stones with three holes to convey the family's whereabouts that is deterministic signal. In this paper we find the capacity of deterministic signal processing about the linear deterministic signals approximately.

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-30
    • /
    • 2020
  • The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

ASUSD nuclear data sensitivity and uncertainty program package: Validation on fusion and fission benchmark experiments

  • Kos, Bor;Cufar, Aljaz;Kodeli, Ivan A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2151-2161
    • /
    • 2021
  • Nuclear data (ND) sensitivity and uncertainty (S/U) quantification in shielding applications is performed using deterministic and probabilistic approaches. In this paper the validation of the newly developed deterministic program package ASUSD (ADVANTG + SUSD3D) is presented. ASUSD was developed with the aim of automating the process of ND S/U while retaining the computational efficiency of the deterministic approach to ND S/U analysis. The paper includes a detailed description of each of the programs contained within ASUSD, the computational workflow and validation results. ASUSD was validated on two shielding benchmark experiments from the Shielding Integral Benchmark Archive and Database (SINBAD) - the fission relevant ASPIS Iron 88 experiment and the fusion relevant Frascati Neutron Generator (FNG) Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) mock-up experiment. The validation process was performed in two stages. Firstly, the Denovo discrete ordinates transport solver was validated as a standalone solver. Secondly, the ASUSD program package as a whole was validated as a ND S/U analysis tool. Both stages of the validation process yielded excellent results, with a maximum difference of 17% in final uncertainties due to ND between ASUSD and the stochastic ND S/U approach. Based on these results, ASUSD has proven to be a user friendly and computationally efficient tool for deterministic ND S/U analysis of shielding geometries.

The interface among psychology, technology, and environment: Indigenous and cultural analysis of the probabilistic versus deterministic view of accident and safety (인간, 과학기술과 환경의 대한 이해: 사고와 안전에 대한 확률론적 시각과 결정론적 시각의 토착 문화적 분석)

  • 김의철
    • Korean Journal of Culture and Social Issue
    • /
    • v.9 no.spc
    • /
    • pp.123-147
    • /
    • 2003
  • This paper provides a comparative analysis of the probabilistic versus deterministic view of accident and safety using the indigenous and cultural perspectives. Death and injury due to accidents is the leading cause of preventable death in most countries, including Korea. The first part of this paper delineates the limitation of the linear, deterministic model that has been adopted in social and applied sciences. The transactional model, advocated by indigenous psychology, is provided to understand the probabilistic nature of accident and safety at home, in the workplace and in society. Second, factors related to accidents and safety are reviewed. Third, application of the probabilistic model for preventing accidents and promoting safety in Korea is outlined.

  • PDF

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

Evaluation of Liquefaction Potential for Soil Using Probabilistic Approaches (확률적 접근방법에 의한 지반의 액상화 가능성 평가)

  • Yi, Jin-Hak;Kwon, O-Soon;Park, Woo-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.313-322
    • /
    • 2006
  • Liquefaction of soil foundation is one of the major seismic damage types for infrastructures. In this paper, deterministic and probabilistic approaches for the evaluation of liquefaction potential are briefly summarized and the risk assessment method is newly proposed using seismic fragility and seismic hazard analyses. Currently the deterministic approach is widely used to evaluate the liquefaction potential in Korea. However, it is very difficult to handle a certain degree of uncertainties in the soil properties such as elastic modulus and resistant capacity by deterministic approach, and the probabilistic approaches are known as more promising. Two types of probabilistic approaches are introduced including (1) the reliability analysis (to obtain probability of failure) for a given design earthquake and (2) the seismic risk analysis of liquefaction for a specific soil for a given service life. The results from different methods show a similar trend, and the liquefaction potential can be more quantitatively evaluated using the new risk analysis method.

A multilevel framework for decomposition-based reliability shape and size optimization

  • Tamijani, Ali Y.;Mulani, Sameer B.;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.467-486
    • /
    • 2017
  • A method for decoupling reliability based design optimization problem into a set of deterministic optimization and performing a reliability analysis is described. The inner reliability analysis and the outer optimization are performed separately in a sequential manner. Since the outer optimizer must perform a large number of iterations to find the optimized shape and size of structure, the computational cost is very high. Therefore, during the course of this research, new multilevel reliability optimization methods are developed that divide the design domain into two sub-spaces to be employed in an iterative procedure: one of the shape design variables, and the other of the size design variables. In each iteration, the probability constraints are converted into equivalent deterministic constraints using reliability analysis and then implemented in the deterministic optimization problem. The framework is first tested on a short column with cross-sectional properties as design variables, the applied loads and the yield stress as random variables. In addition, two cases of curvilinearly stiffened panels subjected to uniform shear and compression in-plane loads, and two cases of curvilinearly stiffened panels subjected to shear and compression loads that vary in linear and quadratic manner are presented.