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Abstract — The objective of this work is fo integrate reliability analysis into topology optimization problems. We introduce the
reliability constraint in the topology optimization formulation, and the new moude} is called Reliability-Based Topology
Optimization (RBTO). The application of the RBTO model gives a different topology relative to the classical topology
optimization that should be deterministicc. When comparing the structures resulting from the deterministic topology
optimization and from the RBTO model, the RBTO mode! yields structures that arc more reliable than the deterministic ones
(for the same weight). Several applications show the importance of this integration,
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1. Introduction

Significant research over the last four decades has focused
on the search for the “optimum” structural system. Two
basic design philosophics are used in structural optimization:
Deterministic Structural Optimization philosophy and
Reliability-Based Structural Optimization philosophy
(Frangopol 1995). Deterministic structurcs are treated with
deterministic (or fixed) data concerning geometry, loading,
materials ..., and the designer aims to obtain the solution
without caring about the effects of unccriainties (or
randomness) concerning geometry and loading data.
However, structural problems are generally non-deterministic
that necessitates concepts and mcthods of probability. The
integration of reliability {or probability) analysis can be
carried out into the three structural optimization families:
Sizing, Shape and Topology optimization. Therefore, the
reliability-based optimization aims to definc the best
compromise between cost and safety. When integrating the
reliability concept into the sizing and shape optimization, the
model is called Reliability-Based Design Optimization
(RBDO), which allows us to design structures, which satisty
economy and safety requirements (see Kharmanda er al.
2001-2007).

But when coupling the rchability amalysis with the
topology optimization being considercd non-quantitative of
nature, the new model is called Reliability-Based Topology
Optimization (RBTO). The purpose of the Reliability-Based
Topology Oplimization (RBTO) is to consider some uncer-
tainties of the geometry or the loading of the structure, by
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inroducing  the reliability criteria in the optimization
procedure. This integration takes into account the randomness
of the applied loads and the gcometry description.

2. RBTO models

Topology Optimization is used to increase the perfonmance
of structures. The deterministic topology optimization has
great impact on the performance of structures, and (he last
decades have seen an enormous interest in this important
sub-area of structural optimization (Bendsec and Kikuchi
1988; Bendsoe 1995; Olhoff et of. 1998; Beckers 1999,
Othoff 2000; Eschenauer and Olhoff 2001). Recently, a new
model called, Reliability-Based Topology Optimization
(RBTO), has been proposed from two points of views:

From point of view topology optimization, Kharmanda
and Olhoff (2001) have claborated un RBTO model with
object of providing the designer with several reliability-based
structures however in the classical topology optimization, the
designer produces only onc deterministic topology. It has
been shown the importance of the RBTO model yields
structures that are more reliable than those produced by
deterministic topology optimization (for the same weight,
see Kharmanda and Olholl’ 2002; Kharmanda et al. 2004).
In the new model reliability constraints have been introduced
inte deterministic topology optimization problern (rcliability-
based constraints with SIMP approach for continuum
structures). The used limit state function is a linear combination
of the random variables. Therefore, the proposed approach
is a heuristic strategy that aums to reduce mass while
improving the reliability level of the structure without
greatly incrcasing its weight. But the limit state function
used by (hem was not based on failure critcnia for the
structure. This formulation considered uncertainty with
respect to geometrical dimension and applied load only.
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Also their reliability analysis seems to be independent of the
boundary and loading condition, so their results showed
similar vatlues for the uncertain variables for different
structures (Mozumder and Renaud 2006).

From a point of view reliability analysis, the classical
topology optimization is formulated as finding the stiffest
structural layout with a volume constraint. However, the
feasibility of volume constraint is not critical in structural
design problems. It is more important to consider the
variations of the stiffness under uncertainties. To maintain
the robustness of stiffness in the topology design, Bae and
Wang (2002) formulated the topology design optimization
as volume minimization problem with a displacement
constraint and applied the RBDO technique. They minimize
the structural volume subject to linear limit state fimction. In
the research of Jung et af. (2003), the extension of the work
of Bae and Wang for the geometrically non linear problems
is studied. They minimize the structural volume subject to a
nonlinear limit state function. Next, Tovar ef a/. (2004) have
developed the Hybrid Cellular Automaton (HCA) method
for structural synthesis of continuum material where the
state of each cell is defined by both density and strain
energy. In Agarwal (2004), a decoupled RBDO approach is
employed such that the topology optimization is separate
trom the reliability analysis. Patel ef al. (2005) showed the
use of RBTO using the gradient free Hybrid Cellular
Automata (HCA) method. Their formulation incorporates
uncertainty with respect to material property also. They
considered limit state function based on failure modes on the
output displacements.

So the topology point of view philosophy seems to be
interesting for topology designers because it provides several
reliability-based structures relative the reliability index changes.
Some works have been carmied RBTO from point of view
philosophy. It led to different topology structure with a high
percentage of the grey elements which has no sense for the
following optimization stages.

2.1. Formulation
The main difference between the deterministic topology
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Fig. 1. (a) Normalized space and (b} Statistical study.

optimizaticn procedure and the proposed RBTO model is to
take Ito account the randomness (variability) of the most
important variables that exhibit strong influence on the
resulting optimal topology. The deterministic topology
problem allows for the prediction of the gross shape of the
body and it is possible to predict placement and shape of
holes in the structure. However, the RBTO model leads to a
different set of optimal topologies with respect to that
produced by the deterministic topology optimization procedure.
In order to control the produced topologies, a reliability
index / (see Hasofer and Lind 1974} is introduced with a
normalized vector u that defines the relation between the
random variables y and the design variables x. The general
calculation of the reliability index (RIA: Reliability Index
Approach; Tu et ol. 1999) can be realized by the following
form:

S=min(/u’u) subject to Fiu)=0 (1)

The optimum value of £ corresponds to the best
distribution of the vector u relative to the smdied random
vanables. The solution of this problem is called the design
point P, as illustrated in Fig. 1a. The evaluation of reliability
index is camried out by FORM (First Order Reliability
Method) for linear limit state function and by SORM
(Second Order Reliability Method) for nonlinear limit state
function. When the mechanical model is defined by
numerical methods, such as the finite element method, the
evaluation of the reliability implies a special coupling
procedure between both reliability and mechanical models.
According to a statistical study of failure probability, several
distributions can be approximated (normal, lognormal,
uniform. ..). For both theoretical and practical reasons, the
normal distribution is probably the most important distri-
bution in statistics. For example, many classical statistical
tests are based on the assumption that the data follow a
nermal distribution. Figure 1b shows an example of a
statistical study that can be approximated to normal
distribution case, the target (or allowed) reliability index £
(Haldar and Mahadevan 2000; Ditlevsen and Madsen 1996)
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is calculated using the failure probability as follows:
Py= [Ay)dy,...dv, (22)

The target reliability index that correspond to the resulting
failure of probability of equation 2 (scc Figure 1b), in linear
limit state function is numerically computed as follows

Pa®(-B) or f=—07'(P) (2b)

where @(.) is the standard Gaussian cumulated function
given as follows.

2

d(y=—L :[e_idz, (20)
”—m )

The normalized variable for normal distribution case of a
random parametcr y; can be written as:
Yi—m;

u=——, i=1,.,n (3a)

G;

where # is the number of random variables, m; and o, arc
respectively standard-deviations and mean value of /*
random parameter y; . Equation 2b numerically gives the
target reliability index 4 to be respected and the
reliability index /Au) is then presented by the following
formulation:

Awy=min,fu3+.. +u+. +ul (3b)

In general the nuclear and spatial studics nccessilate very
small failure probability, the failurc probability should be:
Pel10°- 10 that comresponds to a reliability index
pe[4.75 - 5.6] when using equations 2b and 2¢, while in
structural studies, the failure probability should be: Pye[10
¥~ 107%] that corresponds to a reliability index fe[3 —4.25].
In this paper, we consider the target reliability index which is
used in structural engineering as 4= 3.8. Beforc presenting
the RBDO miodel, we start writing, the formulation of the
classical topology problem using the SIMP approach
(Bendsoe 1989), we then have:

N
min: Compliance (x)= qTKq =X px,Y ]qlkoqo
e-1

Volume(x)zﬂx)

subject to: (4a)

0

where q and K arc the global displacement vector and the
global stiffness malrix, respectively. q. and ky arc the
element displacement vector and stiffncss  matrix,
respectively. & is the number of clements to discretize the
design domain, p is the penalization power, Folume and ¥,
are the material volume and design domain volume,
respectively, and f'is the prescribed volume fraction. The
design variables x are the dimensions of the discretization
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elements. In the DTO, the input vector m regroups the
geometry and loading paramelers being delerministic
(fixed). However, the input vector y of the RBDO is
computed according to a reliability analysis (see figure 2)
and the problem can be then written as:

N
min: Compliance (x)= qTKq =y —p(x, Y lqj kogo
e~

Volume(x) _

subjectto: u)=p, and v, Ax) (4b)

Au) and A are the reliability index ol the system and the
target (or allowable) reliability index, respectively. In
equation (4b) the cvaluation of the reliability constraint
Aw)=p is camied oul by an optimization process to find
the minimum distance between the origin of the normalized
spacc and the limit state tunction using FORM or SORM
(see Fig. 1). For simplicity, we use in this work the FORM
to solve equation (1) for linear limit state function.

2.2 RBTO algorithm

We define our strategy, which implies a coupling between
the reliability analysis and the topology design problem.
After having proposed a sct of parameter assembled in the
vector m which will be called the deterministic input
parameter vector, this vector concerns the applied loads and
geometry of the structure. The selection of these active
parameters depends on the role of each one in the structure
{for example: geometry, loading, materials ...). If thesc
paramelers are not given as requirements, the designer can
analytically, semi-analytically or numerically study the
sensitivity analysis to identify random parameters which
have significant effect on the objective [unction. This
selection is considered a facultative step. However, our
RBDO algorithm consists of two main steps:

Step 1: Reliability index evaluation

The evaluation of the reliability index can be carried out
by a particular optimization procedure. ‘This index is the
minimum distance in the normalized space ([ig. 1a). For
simplicity, the fimit state is considered as linear function
(Fig. 1a), the reliability problem is then given by:

S~ mind(u),/ul+..+u2+. .. +ul subjectto Su)=f,
(5a)

During the optimization procedure, we can analyticatly
provide the derivative of the distance o with respect to «; by
the following form:

.(_2‘1 = —ui
Su, d(u)
‘The resulting vector w of the problem in equation {5a) will

be used to evaluatc the random vector y. The selected
parameters will be assembled in the random parameter

(5b)
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vector y as input values. The used optimization process is
simply the gradient-based method to update u.

Step 2: Topology optimization procedure

After satisfying the reliability constraints and determining
the vector of the random parameters y, we call the topology
optimization procedure with the resulting input random
vector y. The resulting optimal topology principally depends
on the target reliability index values 4 The topology problem
(4b) seeks to minimize the compliance using the new values
of the random variables y as inputs. The used optimization
method to update x is the standard optimdlity criteria
method. For more details on the derivation and implementation
of the optimality criteria method, the reader is referred to the
literature (e.g. Bendsee 1995). During the topology
optimization process, the sensitivity analysis of the objective
function is analytically carried out with respect to the design
variables x (Sigmund 2001) as follows:?
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Fig. 2. RBTO procedure

Fig. 2 shows both steps of the RBTO algorithm. The
construction of this algorithm is first to regroup the most
influent parameters in an input vector m. Next, the reliability
index Bwill be evaluated in satistying the associated linear
constraint and the resulting normalized vector u will be used
to formulate the random parameter vector y that will be
considered as input vector for the [ollowing topology
optimization process. Finally, we apply the SIMP approach
to obtain the new reliable and optimal topology (Fig. 2).

3. Numerical Applications

The rchiability-based design optimization (RBDO) tries to
find a highly reliable design by ensuring the satisfaction of
probabilistic (or reliability) constrainis. In the conventional
RBDO method using the refiability index evaluation, the
probabilistic constraints are stated in terms of the reliability
indices obtained from the first-order reliability method
(FORM). In the FORM, the reliability indices are calculated
by determining the most probable point (MPP) in the
standard normal space of random variables (u-space). At
each iteration in the RBDO, the MPP search is necessary to
obtain the reliability indices. The computational requirements
are costly because numerous reliability analyses should be
performed. Furthermore, the MPP search is very expensive
for highly nonlinear constraints in the u-space (Jung and
Cho 2004). This way ofen leads to very high computing time
and weak convergence stability. The topology optimization
process is already expensive. We have to note that when
coupling with the relability constraints, the new RBTO
problem becomes cxtremely complex. Thus, we need to
simplify the RBDO process by using the topology point of
view that allows the designer to generate different topologics
according to the variability of reliability index. A truss
modeling in Kharmanda ef al. (2004) for resulting topologies
shows that the reliability-based topology contains a number
of bars more than the deterministic topology which
generally leads to more reliable structure, Tn order to validate
the topology point of view, we apply the deterministic
topology optimization procedure and the RBTO model to
several cases as follows:

3.1 RBTO for static analysis

The design domain considered and the boundary and
loading conditions are illustrated Fig. 3a. It concems a
MBB-beam submitted to a single static load. When using
SIMP approach, the DTO problem seeks to minimize the
compliance subject to a given volume fraction. When
considering the input parameter vector m and the design
vector X as optimization variables, we can write:

min: Compliance (x) subject to: %ﬂ =fix) (D
0

where FTolume and V), are the actual volume and design
domain volume, respectively, and fis the prescribed volume
fraction. Here, the number of clements in the horizontal and
vertical directions: nelx =120 and rely =20, respectively,
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Fig. 3. Resulting DTO and RBDO structure for the MBB-beam
under a static load.

f=0.5 is the volume fraction, =1 is the applied force. For
RBTO, these parameters are regrouped o be the mean values
m;= {120,20,0.5,-1} of the selected four random variables,
The standard-deviations are considered as given proportional
values of the mean vector: g;=0.1m. Now we [ind the
random variable values y; using equations (1) and (2). When
the reliability constraint is satisfied, the optimum normalized
vector u’ leads to the random vector y that containg new
values of the horizontal number nelx, the vertical number
nely, the volume fraction f and the applied load F. For the
RBTO procedure, we consider the random vector y as
geometry and loading inputs and add the structure reliability
index as a constraint to satisty the target (required) reliability
index £=3.8¢[3 ~4.25] as presented in Section 2.

So the RBTO problem is to minimize compliance subject
10 a given volume fraction and reliability constrains. When
considering the input random vector ¥ as geometry and
loading paramcter from problem (1) and the design variables
X, wWe can write:

min: Compliamee (X)
subject to: Au)=p and M =fx) (8)
0

When applying thc DTO procedure, we get the resulting
topology illustrated in Fig. 3b whilc for the application of
the RBTO procedure, the resulting topology is illustrated in
Fig. 3¢. During the optimization process of this example, the
RBTO needs morc lime to converge rclative to DTO
because the resulting RBTO topology has a smaller volume
fraction value (see Table 1).

3.2. RBTO for modal analysis
The initial design domain considered and the boundary
conditions are illustrated in Fig. 4a. We apply free vibrations

Table 1. Input parameters and results of DTO & RBTO model for static
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Fig. 4. Resulting DTO and RBDO structwre for the MBB-beam
under tree vibrations.

on the studied beam and get scveral shape modes. Figs. 4b
and 4c¢ show the optimized topologies for DTO and RBTO,
respectively. The classical topology optimization problem is
to minimize compliance subject to a given volume fraction.
When considering the input parameter vector m and the
design vector X as optimization variables, we can write;

min: Compliance (x) subject to: %& =f “)
0

‘The number of clements in the horizontal and vertical
directions: refx = 120 and nefy — 20, respectively, and f=0.5
is the volume fraction. For RBTO, these parameters arc
regrouped (0 be the mean values mr; = {120,20,0.5} of the
selected three random parameters. The standard-deviations
are also considered as given proportional values of the mean
vector: g;=0.1m;. Now we find the random values v; using
cquations (1) and (2). When the rcliability constraint is
satisfied, the optimumn normalized vector u leads to the
random vector y that contains new values of the horizontal
number relx, the vertical number #nely, and the volume
fraction £ For the RBTQ procedure, we consider the random
vector y as geometry and loading inputs and add the
structure reliability index as a constraint to satisfy the target
(required) reliability index 4 = 3.8. So the RBTO problem is
to minimize compliance subject to a given volume fraction
and reliability constrains. When considering the random
vector y resulting from problem (1) and the design variables
X, WC can wrilc:

min: Compliance (x)
subject to: Ku)=p, and Mfe(x) =7 (10)
0

When applying the DTO procedure, the DTO and RBTO
algorithms do not provide us with significant topologies for

analysis.
Model Input Inpul parameters QOutput results
vector nelx nely volirac F JiA Objective Heration  CPUU-Time
DTO m 120 20 0.5000 -1.000 - 204.43 134 01m30s
RBTO ¥ 142 16 0.4057 -1.189 38 980.21 155 16m18s
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Table 2. Input parameters and results of DTO & RBTO model for modal analysis

Model Input Input parameters Output results

veclor nelx nely volfrac yi! Objective Iteration CPU-Time
DTO m 120 20 0.5000 - 868.90 35 38m2ls
RBTO y 142 16 0.3797 3.8 1262.82 39 36m09s
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Fig. 5. Resulting DTO and RBDO structure for the two sides fixed
beam under fatiguc distributed loads.

the first four shape modes but at the fifth shape mode we get
the resulting topology illustrated in Fig. 4b and c. We found
that both DTO and RBTO algorithms need to more
conditions to converge. Table 2 shows that the computing
time consummation of the RBTO process is smaller than the
DTO one that leads to not consider the computational time
as a drawback of the RBTO model but the main importance
is to provide the designer with several generated topologies
and to control their rehiability levels.

3.3. RBTO for fatigue analysis

The initial design domain considered and the boundary
conditions are illustrated in Fig. 5a. The MBB-beam is
submitted to a distributed fatigue load. Figs. 5b and 5¢ show
the optimized topologies for DTO and RBTO, respectively.
When considering the input parameter vector m, the
optimization problem is to minimize the maximum damage
subject to can be written as:

min: max Danage (x) subject to: @@;’6& =Ax) (11)

0

where x is the vector of design variables corresponds to the
number of element to be optimized. The number of
elements in the horizontal and vertical directions: nelx = 80
and nely = 16, respectively and the force F=-4.10", For
RBTO, these parameters are regrouped to be the mean
values of the selected three random variables m; = {80,16,
-4.107}. The standard-deviations are considered as given
proportional values of the mean vector: ;= 0.1m;. Now we
find the random values y; using equations (1) and (2). When
the reliability constraint is satisfied, the optimum normalized
vector 0" leads to the random vector y that contains new
values of the horizontal number #elx, the vertical number
nely, and the applied force F. For the RBTO procedure, we
consider the random vector y as geometry and loading

inputs and add the structure reliability index as a constraint
to satisfy the target (required) reliability index £=3.8. So
the RBTO problem is to minimize the maximum damage
subject to a given volume fraction (f=10.7) and reliability
constrains. When considering the random vector y resulting
from problem (1} and the design vanables x, we can write:

min: max Danage (x)

subject to: Au)> 4, and W#V”:"Qﬂx) (12)

When applying the DTO procedure, we get the resulting
topology illustrated in Fig. 5b but the application of the
RBTO procedure, the reliability-based topology at the same
mode leads to the resulting topology illustrated in Fig. 5c.
The beam structure is subjected to a multiaxial stress state
due to the action of the distributed load. Among the great
pumber of multiaxial fatigue criteria, a frequency
formulation of the Crossland’s damage criterion is chosen as
fatigue damage assessment method. The formulation is well
suited to random vibration problems and gives a fast and
accurate estimation of the structural fatigue damage from the
stress power spectral densities (PSD). The classical time
domain approach of this criterion (Crossland, 1956) based
on a global approach has been validated for multiaxial
periodic loads and appears to be one of the most widely
used in high cycle fatigue. The criterion assumes the
structure  reliability aficr a period 7 if the following
inequality is satisfied at every point of the structure:

JE“’;}"““"X"(’)SL re[0,7] (13)

J, is the maximum amplitude of the second invariant
of the stress deviator, this expression is related to the Von
Mises stress a(7). Xf) is the hydrostatic pressure defined as
a function of the first invariant of the stress tensor, ay,, and £,
are material parameters function of endurance limits. The
frequency formulation proposed by Pitoiset (2000), partly
relies on the peak factor theory and can be applied directly
after a spectral analysis as classically performed in random
vibration. Over an observation period 7 the peak factor in
our case allows to estimate the extreme value reach by a
process based on the Von Mises stress of) and the
hydrostatic pressure p(¢), thus:

i [ @ oMo, (14)
maxp(t)zﬁjwp(m)dfﬂnp - (15)

The equivalent Von Mises stress PSD @ @) and the PSD
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of the hydrostatic pressure @,(w) can be calculated from the
PSD matrix @) of the stress vector o{f), the procedure
for the evaluation of thesc terms is detailed by Segalman et
al. (2000). 7. and 7, stand for the peak factors of the PSD
O (w) and P {@). The mean of the process peak factor
could be approximated as a function of the process spectral
moments following a Davenport’s expression {Davenport,
1964). The obtained value for the criterion can be
considered as the resulting fatigue damage atier a period 7.
Moreover the frequency domain formulation appears 10 be
computationally by far more efficient than the time domain
formulation allowing great computer saving in an optimization
procedure. The design variables of the optimization procedure
are binary design variables {0,1} stating thc absence (0) or
presence (1) of each tinite element. So the obtained results
are presented in black and white but when considering the
element material density as design variables, the resulting
topology can be presented in different colors according to
the interval [0-1]. For the presented casc, the CPU-time of
the RBTO process generally (not always) needs more
computing time than the DTO procedure in order to
generate several topologies starting from the samc input
values and to control certain parameters (see Table 3). So the
application of the RBTO model gives a different topology
relative to the deterministic topology optimization.

4. Importance and Validation

4.1 Analytical demonstration: Truss modecling

In order to demonstrate the importance of the integration
of reliability constraints into the classical topology optimization,
we consider a cantilever beam (IFig. 6a) submitted 1o a singlc
load F. The structurc is loaded by a vertical force F. The
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mean value of this force is mr=8 KN, the safety factor is
Se-= 1,25 and the allowable stress i1s o, = 235 MPa. We now
calculate analytically the bar areas of the structures obtained
by Deterministic Design Optimization and Rchability-Based
Design Optimization, respectively. The optimization problem
is (0 minimize the structural volume subject to mechanical
stress constraints. The truss structures are illustrated in [Fig.
6d,c. Fig. 6b shows the optimal topology when using the
determimistic procedure and Fig. 6c presents the topology
when integrating the reliability in the topology procedure
(RBTO). The dimensions and the angles are: 7. = 1000 mm,
H=875mm, a=45" and f=30° respectively. For the
deterministic design, the structural volume of the deterministic
topology is V. =132367 mm’, but when introducing the
reliability, the structure volume will be V'=114325 mm’.
The weight reduction is thus: 13.6%. This example shows
that the new topology reduces the structural weight by
13.6% for the same conditions. It means that the
introduction of the reliability analysis during the topology
optimization reduces the structural weight when using a
shape optimization module (for deterministic design). Now
if we consider that the force is the only random variable,
according to the normal distribution law, we can cvaluate the
reliability of the structwre by calculating the normalized
variable in considering that the standard-deviation o= 0.1
X my., we then obtain 8= ] =2.5. However, for the Reliability-
Based Design Optimization model, when considering a
simple casc of one random variable (the applied torce F)
and the target reliability level 4 =3.0, we have #=3.0 and
then F=104KN. For the same example, if we replace
F=10KN by F=104KN and seeing that the relation of
the stress o= N/A s linear, the structural volume of the
deterministic topology procedure is V.7 = 137662 mm’

Table 3. Input parametcrs and results of DTO & RBTO modcl for fatigue analysis.

Model Input Inpul parameters Output results .
vector nelx nely A Objective Iteration CPU-Time

DTO m 80 16 -4.10" — 0.40 74 (1h37m47s

RBTO y 9% 20 -4.7.10" 3.8 0.51 71 03h32m42s

Fig. 6. Topology, truss and CAD/CAE modeling of a cantilever beam.
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but when introducing the reliability the structure volume
will be F*°°=118898 mm’. The weight reduction is
13.6%, the same as of the deterministic one. This reduction
demonstrates the importance of (he reliability in the
topology optimization. This importance can also be verified
when considering shape and sizing optimization for
deterministic structural optimization as well as for reliability-
based structural optimization. The truss modeling for both
resulting topologies for the three cases (static, modal and
fatigue) shows that the reliability-based topology contains a
number of bars more than the deterministic topology which
generally leads to more reliable structure. Here, we modeled
the structures by truss for same boundary conditions and
same geometrical dimenstons. The truss modeling of the
static and fatigue cases shows that the RBTO truss modeling
has is bigger number of bars rclative to the DTO, except the
DTO result for the modal case in Figure 3b that cannot be
approximated to a truss model. Both resulting topologtes for
the three cases (static, modal and fatigue) show that the
reliability-based topology contains a number of bars more
than the deterministic topology which may generally leads
to more reliable structure.

4.2 Numerical demeonstration: CAD/CAE modeling

The RBTO model contains the principal successive
processes: reliability index evaluation, and a topology
optimization process. The cantilever beam illustrated in Fig.
6a, is subjected to a singlc external load. The objective is to
show the difference between the resulting deterministic
topology and the reliability-based one. In Fig. 6b and Fig. 6¢
show the resulting deterministic topology and the reliability-
based one with reliability index 4 =3.8. Now we apply a
shape optimization algorithm to the meshed models for both
cases, illustrated in [ig. 6f and Fig. 6g. The shapce
optimization problent is to minimize the structural volume
subject to mechanical stress, displacement constraints and
parameter limitations. The structure is loaded by a vertical
force F=3 kN as indicated in Fig. 6a. The safety factor is
S= 1.5, the allowable stress is o,=9Mpa and the
allowable displacement is ¢, = 1 mm. The beam length and
height are: L = 1000 mm and H = 700 mm, respectively. For
the resulting deterministic topology, the structural volume of
the optimal configuration, illustrated in Fig. 6h, is Vc=
268938 mm’. However, when introducing the reliability, the
structural volume of the optimal configuration, illustrated in
Fig. 6j, is only ¥'=216747 mm’. This example shows that
the new topology reduces the structural weight by 19.4% for
the same conditions. It means that the introduction of the
reliability analysis during the topology optimization reduces
the structural weight when using a shape optimization
module (for determmistic design optimization). This importance
can also be verified when considering reliability-based design
optimization. The interested reader can see different topologies
for different reliability levels (Se [t — 6]) for only static cases
in Kharmanda et al. 2004. This strategy allows us to
generate different topologies because the resulting optimal
topologies principally depend on the reliability index vahue.

5. Conclusion

The proposed RBTO model aims to consider randomness
(vanability) of the most important quantities of a structure
such as the geometry and the applied loads. This model can
provide designers with different topologies. Another advantage
is the reduction of structural weight for the same conditions.
This weight reduction will manifest itself in deterministic
design optimization as well as in reliability-based design
optimization.
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