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Abstract - The objective of this work is to integrate reliability analysis into topology optimization problems. We introduce the 
reliability constraint in the topology optimization formulation, and the new model is called Reliability-Based Topology 
Optimization (RBTO). The application of the RBTO model gives a different topology relative to the 이assic이 topology 
optimization that should be deterministic. When comparing the structures resulting from the deterministic topology 
optimization and from the RBTO model, the RBTO model yields structures that are more reliable than the deterministic ones 
(for the same weight). Several applications show the importance of this integration.
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1. Introduction

Significant research over tiie last four decades has focused 
on the search for die “optimunT structural system. Two 
basic design philosophies are used in structural optimization: 
Deterministic Structural Optimization philosophy and 
Reliability-Based Structural Optimization philosophy 
(Frangopol 1995). Deterministic structures are treated with 
deterministic (or fixed) data concerning geometry, loading, 
materials and the designer aims to obtain the solution 
without caring about the effects of uncertainties (or 
randomness) concerning geometry and loading data. 
However, structural problems are generally non-deterministic 
that necessitates concepts and methods of probability. The 
integration of reliability (or probability) analysis can be 
carried out into the three structural optimization families: 
Sizing, Shape and Topology optimization. Therefore, the 
reliability-based optimization aims to define the best 
compromise between cost and safety. When integrating the 
reliability concept into the sizing and shape optimization, the 
model is called Reliability-Based Design Optimization 
(RBDO), which allows us to design structures, which satisfy 
economy and safety requirements (see Khamanda et al. 
2001-2007).

But when coupling the reliability analysis with the 
topology optimization being considered non-quantitative of 
nature, the new model is called Reliability-Based Topology 
Optimization (RBTO). The purpose of the Reliability-Based 
Topology Optimization (RBTO) is to consider some uncer­
tainties of the geometry or the loading of the structure, by 

introducing the reliability criteria in the optimization 
procedure. This integration takes into account the randomness 
of the applied loads and the geometry description.

2. RBTO models

Topology Optimization is used to increase the performance 
of structures. The deterministic topology optimization has 
great impact on the performance of structures, and the la마 

decades have seen an enomous interest in this important 
sub-area of structural optimization (Bendsoe and Kikuchi 
1988; Bendsoe 1995; Olhoff et al. 1998; Beckers 1999; 
01hoff2000; Eschenauer and 01hofF2001). Recently, a new 
model called, Reliability-Based Topology Optimization 
(RBTO), has been proposed from two points of views:

From point of view topology optimization, Kharmanda 
and Olhoff (2001) have elaborated un RBTO model wi1h 
object of providing ftie designer wifli several reliability-based 
structures however in the classical topology optimization, the 
designer produces o끼y one deterministic topology. It has 
been shown the importance of the RBTO model yields 
structures that 이e more reliable than those produced by 
deterministic topology optimization (for the same weight, 
see Kharmanda and Olhoflf 2002; Kharmanda et al. 2004). 
In tiie new model reliability constraints have been introduced 
into deterministic topology optimization problem (reliability­
based constraints with SIMP approach for continuum 
structures). The used limit state function is a linear combination 
of the random variables. Therefore, the proposed approach 
is a he니ristic strategy that aims to reduce mass while 
improving the reliability level of the structure without 
greatly increasing its weight. But the limit state function 
used by them was not based on feilure criteria for the 
structure. This fbrm니lation considered uncertainty with 
respect to geometrical dimension and applied load only.
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Also their reliability analysis seems to be independent of the 
boundary and loading condition, so their results showed 
similar values for the uncertain variables for different 
structures (Mozumder and Renaud 2006).

From a point of view reliability analysis, the classical 
topology optimization is formulated as finding the stiffest 
structural layout with a volume constraint. However, the 
feasibility of volume constraint is not critical in structural 
design problems. It is more important to consider the 
variations of the stiffoess under uncertainties. Ib maintain 
the robustness of stiflftiess in the topology design, Bae and 
Wang (2002) formulated the topology design optimization 
as volume minimization problem with a displacement 
constraint and applied the RBDO technique. They minimize 
the structural volume subject to linear limit state function. In 
the research of Jung et al. (2003), the extension of the work 
of Bae and Wang for the geometrically non linear problems 
is studied. They minimize the structural volume subject to a 
nonlinear limit state function. Next, Ibvar et al. (2004) have 
developed the Hybrid Cellular Automaton (HCA) method 
for structural synthesis of continuum material where the 
state of each cell is defined by both density and strain 
energy. In Agarwal (2004), a decoupled RBDO approach is 
employed such that the topology optimization is separate 
from the reliability analysis. Patel et al. (2005) 아lowed the 
use of RBTO using the gradient free Hybrid Cellular 
Automata (HCA) method. Their formulation incorporates 
uncertainty with respect to material property also. They 
considered limit state function based on failure modes on the 
output displacements.

So the topology point of view philosophy seems to be 
interesting for topology designers because it provides several 
reliability-based structures relative the reliability index changes. 
Some works have been carried RBTO fiom point of view 
philosophy. It led to different topology structure with a high 
percentage of the grey elements which has no sense for ttie 
following optimization stages.

2.1. Formulation
The main difference between the deterministic topology 

optimization procedure and the proposed RBTO model is to 
take into account the randomness (variability) of the most 
important variables that exhibit strong influence on the 
resulting optimal topology. The deterministic topology 
problem allows for tiie prediction of the gross shape of 1he 
body and it is possible to predict placement and shape of 
holes in the structure. However, the RBTO model leads to a 
different set of optimal topologies with respect to that 
produced by the deterministic topology optimization procedure. 
In order to control the produced topologies, a reliability 
index § (see Hasofer and Lind 1974) is introduced with a 
normalized vector u that defines the relation between the 
random variables y and the design variables x. The general 
calculation of the reliability index (RIA: Reliability Index 
Approach; Tu et al. 1999) can be realized by the following 
fonn:

subject to H(u) = 0 (1)

The optimum value of g corresponds to the best 
distribution of the vector u relative to the studied random 
variables. The solution of this problem is called the design 
point P*,  as illustrated in Fig. la. The evaluation of reliability 
index is carried out by FORM (First Order Reliability 
Method) for linear limit state function and by SORM 
(Second Order Reliability Method) for nonlinear limit state 
function. When the mechanical model is defined by 
numerical methods, such as ttie finite element method, the 
evaluation of the reliability implies a special coupling 
procedure between both reliability and mechanical models. 
According to a statistical study of failure probability, several 
distributions can be approximated (normal, lognormal, 
uniform...). For both theoretical and practical reasons, the 
normal distribution is probably the most important distri­
bution in statistics. For example, many classical statistical 
tests are based on the assumption that the data follow a 
normal distribution. Figure lb shows an example of a 
statistical study that can be approximated to normal 
distribution case, the target (or allowed) reliability index & 
(Haidar and Mahadevan 2000; Ditlevsen and Madsen 1996)

(a)
Fig. 1. (a) Normalized space and (b) Statistical study.

(b)
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is calculated using the failure probability as follows: 

pf=\fiy)dyv..dy„ (2a)

The target reliability index that correspond to the resulting 
failure of probability of equation 2 (see Figure lb), in linear 
limit state function is numerically computed as follows

P产®(-时。다3产一®「'(F》 (2b)

where 0(.) is the standard Gaussian cumulated function 
given as follows.

2
①6如/也’ (2c)

V -GO

The normalized variable for normal distribution case of a 
random parameter can be written as:

北—’％
z“ =------- , (3a)

where n is the number of random variables, and q are 
respectively standard-deviations and mean value of ith 
random parameter . Equation 2b numerically gives the 
target reliability index & to be respected and the 
reliability index 度u) is then presented by the following 
formulation:

Au)=+"?+...+〃， (3b)

In general the nuclear and spatial studies necessitate very 
small failure probability, the failure probability should be:

IO-8] that corresponds to a reliability index 
[4.75-5.6] when using equations 2b and 2c, while in 

structural studies, the failure probability 아iould be: [1(厂

3 — IO-5] that corresponds to a reliability index fle [3 - 4.25]. 
In this paper, we consider the target reliability index which is 
used in structural engineering as /3t = 3.8. Before presenting 
the RBDO model, we start writing the formulation of the 
classical topology problem using the SIMP approach 
(Bendsoe 1989), we then have:

N

min: Compliance (x)= q Kq=伙o0o
1

subject to: 匸이:«x)=f[x) (4a)

where q and K are the global displacement vector and the 
global stiflftiess matrix, respectively. qe and ko are the 
element displacement vector and stiffness matrix, 
respectively. N is the number of elements to discretize the 
design domain, p is the penalization power, Volume and VQ 
are the material volume and design domain volume, 
respectively, and f is the prescribed volume fraction. The 
design variables x are the dimensions of the discretization 

elements. In the DTO, the input vector m regroups the 
geometry and loading parameters being deterministic 
(fixed). However, the input vector y of the RBDO is 
computed according to a reliability analysis (see figure 2) 
and the problem can be then written as:

N
min: Compliance (x)= q Kq = £~~P技¥ 0依o0o

e=l

subject to: P(u)>/3t and 匸의으穿国 (4b)

/^u) and Pt are the reliability index of the system and the 
target (or allowable) reliability index, respectively. In 
equation (4b) the evaluation of the reliability constraint 

is carried out by an optimization process to find 
the minirnum distance between the origin of the normalized 
space and the limit state function using FORM or SORM 
(see Fig. 1). For simplicity, we use in this work the FORM 
to solve eq니ation (1) for linear limit state function.

2.2 RBTO 끼gorithm
We define our strategy, which implies a coupling between 

the reliability analysis and the topology design problem. 
After having proposed a set of parameter assembled in lhe 
vector m which will be called the deterministic input 
parameter vector, this vector concerns 1he applied loads and 
geometry of the structure. The selection of these active 
parameters depends on the role of each one in tiie structure 
(for example: geometry, loading, materials ...). If these 
parameters are not given as requirements, the designer can 
analytically, semi-analytically or numerically study the 
sensitivity analysis to identify random parameters which 
have significant effect on the objective function. This 
selection is considered a facultative step. However, our 
RBDO algorithm consists of two main steps:

Step 1: Reliability index evaluation

The evaluation of the reliability index can be earned out 
by a particular optimization procedure. This index is the 
minimurn distance in the normalized space (Fig. la). For 
simplicity, ttie limit state is considered as linear function 
(Fig. la), the reliability problem is then given by:

/3=minc/(u)시subject to

(5a)

During the optimization procedure, we can analytically 
provide the derivative of the distance d with respect to % by 
the following form:

The resulting vector u of the problem in equ거‘tion (5a) will 
be 니sed to evaluate the random vector y. The selected 
parameters will be assembled in the random parameter 
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vector y as input values. The used optimization process is 
simply the gradient-based methods update u.

Step 2: Tbpology optimization pmcedi*

After satisfying the reliability constraints and determining 
the vector of the random parameters y, we call the topology 
optimization procedure with the resulting input random 
vector y. The resulting optimal topology principally depends 
on the target reliability index values & The topology problem 
(4b) seeks to minimize the compliance using the new values 
of the random variables y as inputs. The used optimization 
method to update x is the standard optimality criteria 
method. For more details on the derivation and implementation 
of the optimality criteria method, ttie reader is referred to the 
literature (e.g. Bendsoe 1995). During the topology 
optimization process, the sensitivity analysis of the objective 
function is analytically carried out with respect to the design 
variables x (Sigmund 2001) as follows:2

쯔 = -P0e尸 q 가(6)

Fig. 2. RBTO procedure

Fig. 2 아lows both steps of the RBTO algorithm. The 
construction of this algorithm is first to regroup the most 
influent parameters in an input vector m. Next, the reliability 
index p will be evaluated in satisfying the associated linear 
constraint and the resulting normalized vector u will be used 
to formulate the random parameter vector y that will be 
considered as input vector for the following topology 
optimization process. Finally, we apply the SIMP approach 
to obtain the new reliable and optimal topology (Fig. 2).

3. Numerical Applications

The reliability-based design optimization (RBDO) tries to 
find a highly reliable design by ensuring the satisfection of 
probabilistic (or reliability) constraints. In the conventional 
RBDO method using the reliability index evaluation, the 
probabilistic constraints are stated in terms of the reliability 
indices obtained from the first-order reliability method 
(FORM). In the FORM, the reliability indices are calculated 
by determining the most probable point (MPP) in the 
standard normal space of random variables (u-space). At 
each iteration in the RBDO, the MPP search is necessaiy to 
obtain the reliability indices. The computational requirements 
are costly because numerous reliability analyses should be 
performed. Furthermore, the MPP search is very expensive 
for highly nonlinear constraints in tiie u-space (Jung and 
Cho 2004). This way often leads to very high computing time 
and weak convergence stability. The topology optimization 
process is already expensive. We have to note that when 
coupling with the reliability constraints, the new RBTO 
problem becomes extremely complex. Thus, we need to 
simplify the RBDO process by using the topology point of 
view that allows the designer to generate diflferent topologies 
according to the variability of reliability index. A truss 
modeling in Kharmanda et al. (2004) for resulting topologies 
shows that tiie reliability-based top이ogy contains a number 
of bars more than the deterministic topology which 
generally leads to more reliable structure. In order to validate 
the topology point of view, we apply the deterministic 
topology optimization procedure and the RBTO model to 
several cases as follows:

3.1 RBTO for static analysis
The design domain considered and the boundary and 

loading conditions are illustrated Fig. 3a. It concerns a 
MBB-beam submitted to a single static load. When using 
SIMP approach, the DTO problem seeks to minimize the 
compliance subject to a given volume fraction. When 
considering the input parameter vector m and the design 
vector x as optimization variables, we can write:

min: Compliance (x) subject to: "지*아*)  =/(x) (7)

where Volume and Vq are the actual volume and design 
domain volume, respectively, and/is the prescribed volume 
fraction. Here, ftie number of elements in the horizontal and 
vertical directions: nelx =120 and nely = 20, respectively,
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Fig. 3. Resulting DTO and RBDO structure for the MBB-beam 
under a static load.
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Fig. 4. Resulting DTO and RBDO structure for the MBB-beam 
니nder free vibrations.

f= 0.5 is the volume fraction, F= 1 is the applied force. For 
RBTO, these parameters are regrouped to be the mean values 
再={120^0,0.5,-1) of the selected four random variables. 
The standard-deviations are considered as given proportional 
values of the mean vector: o; = 0.1 泌.Now we find the 
random variable values using equations (1) and (2). When 
the reliability constraint is satisfied, the optimum normalized 
vector u*  leads to the random vector y that contains new 
values of the horizontal number nelx, the vertical number 
nely, the volume fraction f and the applied load F. For the 
RBTO procedure, we consider the random vector y as 
geometry and loading inputs and add the structure reliability 
index as a constraint to satisfy the target (required) reliability 
index 丿4= 3.8 e[3 - 4.25] as presented in Section 2.

So the RBTO problem is to minimize compliance subject 
to a given volume fraction and reliability constrains. When 
considering the input random vector y as geometry and 
loading parameter from problem (1) and the design variables 
x, we can write:

min: Compliance (x)
subject to: P(u)>Pt and 씌으告。。=似) (8)

When applying the DTO procedure, we get the resulting 
topology illustrated in Fig. 3b while for the application of 
the RBTO procedure, the resulting topology is illustrated in 
Fig. 3c. During the optimization process of this example, the 
RBTO needs more time to converge relative to DTO 
because the resulting RBTO topology has a smaller volume 
fraction value (see Table 1).

3.2. RBTO fbr modal analysis
The initial design domain considered and the boundary 

conditions are illustrated in Fig. 4a. We apply free vibrations 

on the studied beam and get several shape modes. Figs. 4b 
and 4c show the optimized topologies for DTO and RBTO, 
respectively. The classical topology optimization problem is 
to minimize compliance subject to a given volume fraction. 
When consider!!!응 the input parameter vector m and the 
design vector x as optimization variables, we can write:

min: Compliance (x) subject to: 卩况이岩收) =了 ⑶

The number of elements in the horizontal and vertical 
directions: nelx = 120 and nely = 20, respectively, and f= 0.5 
is the volume fraction. For RBTO, these parameters are 
regrouped to be the mean values 〃缶=(120,20,0.5) of the 
selected three random parameters. The standard-deviations 
are also considered as given proportional values of the mean 
vector: 6 = O.lw/. Now we find the random values using 
equations (1) and (2). When the reliability constraint is 
satisfied, the optimum normalized vector u leads to the 
random vector y that contains new values of the horizontal 
number nelx, the vertical number nely, and the volume 
fraction f. For the RBTO procedure, we consider the random 
vector y as geometry and loading inputs and add the 
structure reliability index as a constraint to satisfy the target 
(required) reliability index /% = 38 So the RBTO problem is 
to minimize compliance subject to a given volume ftaction 
and reliability constrains. When considering the random 
vector y resulting from problem (1) and the design variables 
x, we can write:

min: Compliance (x)
subject to: and 也쁴羿스^ =f (10)

When applying the DTO procedure, the DTO and RBTO 
algorithms do not provide 니s with significant topologies for

Table 1. Input parameters and results of DTO & RBTO model for static analysis.

Model Input 
vector

Input parameters Output results
nelx nely volfrac F pt Objective Iteration CPU-Time

DTO m 120 20 0.5000 -1.000 — 204.43 134 01m50s
RBTO y 142 16 0.4057 -1.189 3.8 980.21 155 16ml8s
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Table 2. Input parameters and results ofDTO & RBTO model for modal analysis

Model Input 
vector

Input parameters Output results
nelx nely volfrac A Objective Iteration CPU-Time

DTO m 120 20 0.5000 868.90 35 38m21s
RBTO y 142 16 0.3797 3.8 1262.82 39 36m09s

Fig. 5. Resulting DTO and RBDO structure for the two sides fixed 
beam under fatigue distributed loads.

the first four shape modes but at the fifth shape mode we get 
the resulting topology illustrated in Fig. 4b and c. We found 
that both DTO and RBTO algorithms need to more 
conditions to converge. Table 2 shows that the computing 
time consummation of the RBTO process is smaller than the 
DTO one that leads to not consider the computational time 
as a drawback of the RBTO model but the main importance 
is to provide the designer with several generated topologies 
and to control their reliability levels.

3.3. RBTO for fatigue analysis
The initial design domain considered and the boundaiy 

conditions are illustrated in Fig. 5a. The MBB-beam is 
submitted to a distributed fatigue load. Figs. 5b and 5c show 
the optimized topologies for DTO and RBTO, respectively. 
When considering the .input parameter vector m, the 
optimization problem is to minimize the maximum damage 
subject to can be written as:

min: max Danage (x) subject to: "시辭e(x) =火对 q 

where x is the vector of design variables corresponds to the 
number of element to be optimized. The number of 
elements in the horizontal and vertical directions: nelx = 80 
and nely= 16, respectively and ttie force F = ^.1O12, For 
RBTO, these parameters are regrouped to be the mean 
values of the selected three random variables = (80,16,
-4.1012). The standard-deviations are considered as given 
proportional values of the mean vector: a- = 0.1^. Now we 
find the random values using equations (1) and (2). When 
the reliability constraint is satisfied, the optimum normalized 
vector u*  leads to the random vector y that contains new 
values of the horizontal number nelx, the vertical number 
n가y, and the applied force F. For the RBTO procedure, we 
consider the random vector y as geometry and loading 

inputs and add the structure reliability index as a constaint 
to satisfy the taiget (required) reliability index & = 3 知 So 
the RBTO problem is to minimize the maximum damage 
subject to a given volume fraction (f= 0.7) and reliability 
constrains. When considering the random vector y resulting 
from problem (1) and the design variables x, we can write:

min: max Danage (x)
subject to: p(u)>pt and 卩이1*。⑴ =大对 (12)

When applying the DTO procedure, we get the res니Iting 
topology illustrated in Fig. 5b but the application of the 
RBTO procedure, the reliability-based topology at the same 
mode leads to the resulting topology illustated in Fig. 5c. 
The beam structure is subjected to a multiaxial stress state 
due to the action of the distributed load. Among the great 
number of multiaxial fatigue criteria, a frequency 
formulation of the Crossland's damage criterion is chosen as 
fatigue damage assessment method. The formulation is well 
suited to random vibration problems and gives a fest and 
accurate estimation of the structural fetigue damage from the 
stress power spectral densities (PSD). The classical time 
domain approach of this criterion (Crossland, 1956) based 
on a global approach has been validated for multiaxial 
periodic loads and appears to be one of tiie most widely 
used in high cycle fetigue. The criterion assumes tiie 
structure reliability after a period T if the following 
inequality is satisfied at every point of the structure:

J皇씅프쓰匹项 fe[0,71 (13)

Pm

』丄京 is the maxim나m amplitude of the second invariant 
of the stress deviator, this expression is related to the Vbn 
Mises stress c喚)• P(f) is the hydrostatic pressure defined as 
a function of the first invariant of the stress tensor, g and 用 

are material parameters function of endurance limits. The 
frequency formulation proposed by Pitoiset (2000), partly 
relies on the peak fector theory and can be applied directly 
after a spectral analysis as classically performed in random 
vibration. Over an observation period T the peak fector in 
our case allows to estimate the extreme value reach by a 
process based on ttie \bn Mises stress 히J) and the 
hydrostatic pressure p(i), th讴：

max p(t)as (bp((o)d(OT/p

(14)

(15)

The equivalent Vbn Mises stress PSD Q싱0) and the PSD 
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of the hydrostatic pressure can be calculated from the 
PSD matrix ①of the stress vector o(t), the procedure 
for the evaluation of these terms is detailed by Segalman et 
al. (2000). rjc and % stand for the peak factors of the PSD 
①血，)and 每(a». The mean of the process peak 也ctor 
could be approximated as a fimction of the process spectral 
moments following a Davenporfs expression (Davenport, 
1964). The obtained value for tiie criterion can be 
considered as the resulting fatigue damage after a period T. 
Moreover the frequency domain formulation appears to be 
computationally by far more eflBcient than the time domain 
formulation allowing great computer saving in an optimization 
procedure. The design variables of the optimization procedure 
are binaiy design variables {0,1} stating the absence (0) or 
presence (1) of each finite element. So the obtained results 
are presented in black and white but when considering the 
element material density as design variables, the resulting 
topology can be presented in diflferent colors according to 
the interval [0-1]. For the presented case, the CPU-time of 
the RBTO process generally (not always) needs more 
computing time than the DTO procedure in order to 
generate several topologies starting from the same input 
values and to control certain parameters (see Table 3). So the 
application of the RBTO model gives a diflferent topology 
relative to the deterministic topology optimization.

4. Importance and Validation

4.1 Analytical demonstration: Truss modeling
In order to demonstrate the importance of the integration 

ofreliability constraints into the classical topology optimization, 
we consider a cantilever beam (Fig. 6a) submitted to a single 
load F. The structure is loaded by a vertical force F. "Die

mean value of this force is mF=S KN, the safety factor is 
& = 1.25 and the allowable stress is 囚=235 MPa. We now 
calculate analytically the bar areas of the structures obtained 
by Deterministic Design Optimization and Reliability-Based 
Design Optimization, respectively. The optimization problem 
is to minimize the structural volume subject to mechanical 
stress constraints. The truss structures are illustrated in Fig. 
6d,e. Fig. 6b shows the optimal topology when using the 
deterministic procedure and Fig. 6c presents the topology 
when integrating the reliability in the topology procedure 
(RBTO). The dimensions and the angles are: L = 1000 mm, 
7/=875 mm, a=45° and /3= 30°, respectively. For the 
deterministic design, the structural volume oftiie deterministic 
topology is Vc = 132367 mm3, but when introducing the 
reliability, the structure volume will be V= 114325 mm3. 
The weight reduction is thus: 13.6%. This example shows 
that the new topology reduces the structural weight by 
13.6% for the same conditions. It means that the 
introduction of the reliability analysis d니血g the topology 
optimization reduces the structural weight when using a 
shape optimization module (for deterministic design). Now 
if we consider that the force is the only random variable, 
according to the normal distribution law, we can evaluate tiie 
reliability of the structure by calculating the normalized 
variable in considering that the standard-deviation 辱=0.1 
x mF. we then obtain f3= \u\ = 2.5. However, for the Reliability- 
Based Design Optimization model, when considering a 
simple case of one random variable (the applied force F) 
and the target reliability level /% = 3.0, we have u = 3.0 and 
then 10.4 KN. For the same example, if we replace 
F= 10 KN by F= 10.4 KN and seeing that the relation of 
the stress(y=N/A is linear, the structural volume of the 
deterministic topology procedure is y^DO = 137662 mm3 

Table 3. Input parameters and results of DTO & RBTO model for fatigue analysis.

Model Input 
vector

Input parameters Output results
nelx nely force P, Objective Iteration CPU-Time

DTO m 80 16 -4.1012 0.40 74 01h37m47s
RBTO y 98 20 -4.7.1012 3.8 0.51 71 03h32m42s

"■리r 
개1、

(C)

Fig. 6. Topology, truss and CAD/CAE modeling of a cantilever beam.
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but when introducing the reliability the structure volume 
will be 尸噸=118898 mm% The weight reduction is 
13.6%, the same as of the deterministic one. This reduction 
demonstrates the importance of the reliability in the 
topology optimization. This importance can also be verified 
when considering shape and sizing optimization for 
deterministic structural optimization as well as for reliability­
based structural optimization. The truss modeling for both 
resulting topologies for the three cases (static, modal and 
fatigue) shows that the reliability-based topology contains a 
number of bars more than the deterministic topology which 
generally leads to more reliable structure. Here, we modeled 
the structures by truss for same boundary conditions and 
same geometrical dimensions. The truss modeling of the 
static and fetigue cases 마lows that the RBTO truss modeling 
has is bigger number ofbars relative to the DTO, except the 
DTO result for the modal case in Figure 3b that cannot be 
approximated to a truss model. Both resulting topologies for 
tiie three cases (static, modal and fatigue) show ±at ttie 
reliability-based topology contains a number of bars more 
than the deterministic topology which may generally leads 
to more reliable stacture.

4.2 Numerical demonstration: CAD/CAE modeling
The RBTO model contains the principal successive 

processes: reliability index evaluation, and a topology 
optimization process. The cantilever beam illustrated in Fig. 
6a, is subjected to a sin이e external load. The objective is to 
show the difference between the resulting deterministic 
topology and the reliability-based one. In Fig. 6b and Fig. 6c 
show the resulting deterministic topology and the reliability­
based one with reliability index fl = 3.S. Now we apply a 
shape optimization algorithm to the meshed models for both 
cases, illustrated in Fig. 6f and Fig. 6g. The 아成pe 
optimization problem is to minimize tiie structural volume 
subject to mechanical stress, displacement constraints and 
parameter limitations. The structure is loaded by a vertical 
forceF=3kN as indicated in Fig. 6a. The safety 色ctor is 
Sf= 1.5, the allowable stress is 囚= 90Mpa and tile 
flowable displacement is %, = 1 mm. The beam length and 
height are:Z = 1000 mm and H= 700 mm, respectively. For 
the resulting deterministic topology, the structural volume of 
the optimal configuration, illustrated in Fig. 6h, is Fc = 
268938 mm3. However, when introducing the reliability, the 
structural volume of the optimal configuration, illustrated in 
Fig. 6j, is only f =216747 mm3. This example shows that 
the new topology reduces the structural weight by 19.4% for 
the same conditions. It means that the introduction of the 
reliability analysis during the topology optimization reduces 
the structural weight when using a shape optimization 
module (for deterministic design optimization). This importance 
can also be verified when considering reliability-based design 
optimization. The interested reader can see dififerent topologies 
for difierent reliability levels W타:! — 6]) for only static cases 
in Kharmanda et 기 2004. This strategy allows us to 
generate different topologies because the resulting optimal 
topologies principally depend on the reliability index value.

5. Conclusion

The proposed RBTO model aims to consider randomness 
(variability) of the most important quantities of a structure 
such as the geometry and ttie applied loads. This model can 
provide designers with different topologies. Another advantage 
is the reduction of structural weight for the same conditions. 
This weight reduction will manifest itself in deterministic 
design optimization as well as in reliability-based design 
optimization.
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