• Title/Summary/Keyword: Deterministic Algorithm

Search Result 330, Processing Time 0.025 seconds

A study on the design of adaptive generalized predictive control (적응 일반형 예측제어 설계에 관한 연구)

  • 김창회;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.176-181
    • /
    • 1992
  • In this paper, an adaptive generalized predictive control(GPC) algorithm which minimizes a N-stage cost function is proposed. The resulting controller is based on GPC algorithm and can be used in unknown plant parameters as the parameters of one step ahead predictor are estimated by recursive least squares method. The estimated parameters are extended to G,P, and F amtrix which contain the parameters of N step ahead predictors. And the minimization of cost function assuming no constraints on future controls results in the projected control increment vector. Hence this adaptive GPC algorithm can be used for either unknown system or varing system parameters, and it is also shown through simulations that the algorithm is robust to the variation of system parameters. This adaptive GPC scheme is shown to have the same stability properties as the deterministic GPC, and requires small amount of calculation compared to other adaptive algorithms which minimize N-stage cost function. Especially, in case that the maximum output horizon is 1, the proposed algorithm can be applicable to direct adaptive GPC.

  • PDF

A Model of Dynamic Transportation Planning of the Distribution System Using Genetic Algorithm (유전 알고리듬을 이용한 물류시스템의 동적 수송계획 모형)

  • Chang Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.102-113
    • /
    • 2004
  • This paper addresses the transportation planning that is based on genetic algorithm for determining transportation time and transportation amount of minimizing cost of distribution system. The vehicle routing of minimizing the transportation distance of vehicle is determined. A distribution system is consisted of a distribution center and many retailers. The model is assumed that the time horizon is discrete and finite, and the demand of retailers is dynamic and deterministic. Products are transported from distribution center to retailers according to transportation planning. Cost factors are the transportation cost and the inventory cost, which transportation cost is proportional to transportation distance of vehicle when products are transported from distribution center to retailers, and inventory cost is proportional to inventory amounts of retailers. Transportation time to retailers is represented as a genetic string. The encoding of the solutions into binary strings is presented, as well as the genetic operators used by the algorithm. A mathematical model is developed. Genetic algorithm procedure is suggested, and a illustrative example is shown to explain the procedure.

An In-depth Analysis and Performance Improvement of a Container Relocation Algorithm

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.81-89
    • /
    • 2017
  • The CRP(Container Relocation Problem) algorithms pursuing efficient container relocation of wharf container terminal can not be deterministic because of the large number of layout cases. Therefore, the CRP algorithms should adopt trial and error intuition and experimental heuristic techniques. And because the heuristic can not be best for all individual cases, it is necessary to find metrics which show excellent on average. In this study, we analyze GLAH(Greedy Look-ahead Heuristic) algorithm which is one of the recent researches in detail, and propose a heuristic metrics HOB(sum of the height differences between a badly placed container and the containers prohibited by the badly placed container) to improve the algorithm. The experimental results show that the improved algorithm, GLAH', exerts a stable performance increment of up to 3.8% in our test data, and as the layout size grows, the performance increment gap increases.

A Heuristic Method for Ordering in the Dynamic Inventory System with Quantity Discounts (가격할인이 있는 단일품목 동적 재고모델의 발주정책을 위한 발견적 기법)

  • Lee, Yeong-Jo;Gang, Maeng-Gyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.2
    • /
    • pp.77-87
    • /
    • 1986
  • This paper presents a heuristic method for solving the discrete-time ordering problem with quantity discounts and deterministic, time-varying demand. This algorithm utilizes a variation of the incremental cost approach(ICA) to determine a near optimal solution. The ICA is the method which reduces the total cost with reduction of the number of orders by one. In order to reduce the number of orders, if the incremental cost for one of the periods is negative, the demand of the period should be purchased in its immediate preceding period. In order to test the performance of this algorithm, an experiment is conducted that involves a large number of test problems covering a wide variety of situations. The result of the experiment shows that the proposed algorithm has 80.5% better solutions than the adjusted part period algorithm(APPA), which is known to be the best heuristic method.

  • PDF

Model and Heuristics for the Heterogeneous Fixed Fleet Vehicle Routing Problem with Pick-Up and Delivery

  • Zhai, Shuai;Mao, Chao
    • Journal of Distribution Science
    • /
    • v.10 no.12
    • /
    • pp.19-24
    • /
    • 2012
  • Purpose - This paper discusses the heterogeneous fixed fleet vehicle routing problem with pick-up and delivery (HFFVRPPD), for vehicles with different capacities, fixed costs, and travel costs. Research Design, data, methodology - This paper made nine assumptions for establishing a mathematical model to describe HFFVRPPD. It established a practical mathematical model, and because of the non-deterministic polynomial-time hard (NP-hard), improved the traditional simulated annealing algorithm and tested a new algorithm using a certain scale model. Result - We calculated the minimum cost of the heterogeneous fixed fleet vehicle routing problem (HFFVRP) with a single task and, on comparing the results with the actual HFFVRP for the single task alone, observed that the total cost of HFFVRPPD reduced significantly by 46.7%. The results showed that the new algorithm provides better solutions and stability. Conclusions - This paper, by comparing the HFFVRP and HFFVRPPD results, highlights certain advantages of using HFFVRPPD in physical distribution enterprises, such as saving distribution vehicles, reducing logistics cost, and raising economic benefits.

  • PDF

Multi-Stage Cold Forging Process Design with A* Searching Algorithm (탐색 알고리즘을 이용한 냉간 단조 공정 설계)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF

A New Scheduling Algorithm for Semiconductor Manufacturing Process (반도체 제조공정을 위한 새로운 생산일정 알고리즘)

  • 복진광;이승권;문성득;박선원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.811-821
    • /
    • 1998
  • A new scheduling algorithm for large scale semiconductor processes is addressed. The difficulties of scheduling for semiconductor fabrication processes are mainly due from repeating production of wafers that experience reentrant flows. Sequence branch algorithm (SBA) is proposed for large real scheduling problems when all processing times are deterministic. The SBA is based on the reachability graph of Petri net of which the several defects such as memory consumption and system deadlock are complemented. Though the SBA shows the solution deviating a little from the optimal solution of mixed integer programming, it is adjustable for large size scheduling problems. Especially, it shows a potential that is capable of handling commercial size problems that are intractable with mathematical programming.

  • PDF

An Algorithm for Calculation of Probability Distributions of Output Variables in Process Simulation (공정 시뮬레이션 출력 변수의 확률분포 계산 알고리즘)

  • 최수형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.847-850
    • /
    • 2002
  • Stochastic process analysis is often based on Monte Carlo simulations. As a more rigorous alternative, a deterministic algorithm based on numerical integration is proposed in this paper. which calculates the probability distributions of dependent random variables using the results of simulation with grid points of independent random variables. For performance evaluation, the proposed algorithm is applied to an example problem which can be analytically solved. and the result is compared with that of Monte Carlo simulation. The proposed algorithm is suitable for general process simulation problems with a few independent random variables, and expected to be applicable to areas such as safety analysis and quality control.

Real-Time Task Scheduling Algorithm for Automotive Electronic System (자동차 전장용 실시간 태스크 스케줄링 알고리즘)

  • Kwon, Kyu-Ho;Lee, Jung-Wook;Kim, Ki-Seok;Kim, Jae-Young;Kim, Joo-Man
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • Due to the increasing amount of electronic control system in a vehicle, the automotive software is increasingly sophisticated and complicated. Therefore it may be faced a time critical problem caused by its complexity. In order to solve such problems, the automotive electronic system can use a real-time scheduling mechanism based on predictability. We first consider the standard specification of the AUTOSAR OS and uC/OS-II such as its scheduling theory with time determinism. In this paper, we propose the scheduling algorithm to be conformable to a conformance class of OSEK/VDX specification. Algorithm analysis shows that our scheduling algorithm outperforms an existing Trampoline OS by intuition.

A Regular Expression Matching Algorithm Based on High-Efficient Finite Automaton

  • Wang, Jianhua;Cheng, Lianglun;Liu, Jun
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.78-86
    • /
    • 2014
  • Aiming to solve the problems of high memory access and big storage space and long matching time in the regular expression matching of extended finite automaton (XFA), a new regular expression matching algorithm based on high-efficient finite automaton is presented in this paper. The basic idea of the new algorithm is that some extra judging instruments are added at the starting state in order to reduce any unnecessary transition paths as well as to eliminate any unnecessary state transitions. Consequently, the problems of high memory access consumption and big storage space and long matching time during the regular expression matching process of XFA can be efficiently improved. The simulation results convey that our proposed scheme can lower approximately 40% memory access, save about 45% storage space consumption, and reduce about 12% matching time during the same regular expression matching process compared with XFA, but without degrading the matching quality.