Most real word systems such as world economy, stock market, and medical applications, contain a series of dynamic and complex phenomena. One of common methods to understand these systems is to build a model and analyze the behavior of the system. In this paper, we investigated methods for best clustering over time series data. As a first step for clustering, BIC (Bayesian Information Criterion) approximation is used to determine the number of clusters. A search technique to improve clustering efficiency is also suggested by analyzing the relationship between data size and BIC values. For clustering, two methods, model-based and similarity based methods, are analyzed and compared. A number of experiments have been performed to check its validity using real data(stock price). BIC approximation measure has been confirmed that it suggests best number of clusters through experiments provided that the number of data is relatively large. It is also confirmed that the model-based clustering produces more reliable clustering than similarity based ones.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.1268-1269
/
2011
데이터마이닝 분야에서는 주어진 공간상에 분포되어있는 데이터들을 분석위해 다양한 클러스터링 알고리즘이 존재한다. 그러나 대부분의 클러스터링 알고리즘에서는 클러스터 전체 개수를 미리 요구한다. 이 때문에 클러스터링 알고리즘에서 클러스터 전체개수를 미리 알아내는 것은 매우 중요하다. 본 논문에서는 데이터에 분포하는 클러스터들의 개수를 데이터의 그래프 모델을 이용한 분석으로 찾아내는 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.428-432
/
2007
We present a novel method for determining k nearest neighbors, which accurately recognizes the underlying clusters in a data set. To this end, we introduce the "tiling neighborhood" which is constructed by tiling a number of small local circles rather than a single circle, as existing neighborhood schemes do. Then we formulate the problem of determining the tiling neighborhood as a minimax optimization, leading to an efficient message passing algorithm. For several real data sets, our method outperformed the k-nearest neighbor method. The results suggest that our method can be an alternative to existing for general classification tasks, especially for data sets which have many missing values.
K-means clustering uses a spherical or elliptical metric to group data points; however, it does not work well for non-convex data such as the concentric circles. Spectral clustering, based on graph theory, is a generalized and robust technique to deal with non-standard type of data such as non-convex data. Results obtained by spectral clustering often outperform traditional clustering such as K-means. In this paper, we review spectral clustering and show important issues in spectral clustering such as determining the number of clusters K, estimation of scale parameter in the adjacency of two points, and the dimension reduction technique in clustering high-dimensional data.
Purpose - The primary purpose of this study is to employ effective marketing methods using market segmentation of coffee shops by determining how motivations to visit coffee shops have different impacts on demographic profile of visitors and characteristics of coffee shop visits, so as to draw out a better understanding of customers of coffee market. Research design, data, and methodology - Data were collected using surveys of self-administered questionnaires toward coffee shop users in Daejeon, Korea. A number of samples used in data analysis were 253 excluding unusable responses. The data were analyzed through frequency, reliability, and factor analysis using SPSS 20.0. Factor analysis was conducted through the principal component analysis and varimax rotation method to derive factors of one or more eigen values. In addition, the cluster analysis, multivariate ANOVA, and cross-tab analysis were used for the market segmentation based on the types of motivation for coffee shop visits. The process of the cluster analysis is as follows. Four clusters were derived through hierarchical clustering, and k-means cluster analysis was then carried out using mean value of the four clusters as the initial seed value. Result - The factor analysis delineated four dimensions of motivation to visit coffee shops: ostentation motivation, hedonic motivation, esthetic motivation, utility motivation. The cluster analysis yielded four clusters: utility and esthetic seekers, hedonic seekers, utility seekers, ostentation seekers. In order to further specify the profile of four clusters, each cluster was cross tabulated with socio-demographics and characteristics of coffee shop visits. Four clusters are significantly different from each other by four types of motivations for coffee shop visits. Conclusions - This study has empirically examined the difference in demographic profile of visitors and characteristics of coffee shop visits by motivation to visit coffee shops. There are significant differences according to age, education background, marital status, occupation and monthly income. In addition, coffee shops use pattern characterization in frequency of visits to coffee shops, relationships with companion, purpose of visit, information sources, brand type, average expense per visit, important elements of selection attribute were significantly different depending on motivations for coffee shop visits.
Journal of the Korea Society of Computer and Information
/
v.29
no.5
/
pp.155-164
/
2024
This study proposes an unsupervised learning-based clustering model to estimate the ESG ratings of domestic public institutions. To achieve this, the optimal number of clusters was determined by comparing spectral clustering and k-means clustering. These results are guaranteed by calculating the Davies-Bouldin Index (DBI), a model performance index. The DBI values were 0.734 for spectral clustering and 1.715 for k-means clustering, indicating lower values showed better performance. Thus, the superiority of spectral clustering was confirmed. Furthermore, T-test and ANOVA were used to reveal statistically significant differences between ESG non-financial data, and correlation coefficients were used to confirm the relationships between ESG indicators. Based on these results, this study suggests the possibility of estimating the ESG performance ranking of each public institution without existing ESG ratings. This is achieved by calculating the optimal number of clusters, and then determining the sum of averages of the ESG data within each cluster. Therefore, the proposed model can be employed to evaluate the ESG ratings of various domestic public institutions, and it is expected to be useful in domestic sustainable management practice and performance management.
Understanding the tumor heterogeneity due to differences in the growth pattern of metastatic tumors and rate of change is important for understanding the sensitivity of tumor cells to drugs and finding appropriate therapies. It is often possible to test for differences in population means using t-test or ANOVA when the group of N samples is distinct. However, these statistical methods can not be used unless the groups are distinguished as the data covered in this paper. Statistical methods have been studied to test heterogeneity between samples. The minimum combination t-test method is one of them. In this paper, we propose a maximum combinatorial t-test method that takes into account combinations that bisect data at different ratios. Also we propose a method based on the idea that examining the heterogeneity of a sample is equivalent to testing whether the number of optimal clusters is one in the cluster analysis. We verified that the proposed methods, maximum combination t-test method and gap statistic, have better type-I error and power than the previously proposed method based on simulation study and obtained the results through real data analysis.
As three-dimensional range scanners make large point clouds a more common initial representation of real world objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses principal component analysis to estimate the surface variation at each point. After defining conditions for determining the geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results on large point clouds acquired from real-world objects.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.866-869
/
2015
With the advance in semiconductor technology, the number of elements that can be integrated in system-on-chip(SoC) increases exponentially, and thus voltage scaling is indispensable to enhance energy efficiency. Near-threshold voltage computing(NTC) improves the energy efficiency by an order of degree, hence it is able to overcome the limitation of conventional super-threshold voltage computing(STC). Although NTC-based low performance manycore system can be used to maximize energy efficiency, it demands more number of cores to sustain the performance, which results in considerable increase of area. In this paper, we analyze NTC manycore architecture considering the trade-offs between performance, power, and area. Therefore, we propose an algorithmic methodology that can optimize power consumption and area while satisfying the required performance by determining the constrained number of cores and size of caches and clusters in NTC environment. Experimental results show that proposed NTC architecture can reduce power consumption by approximately 16.5 % while maintaining the performance of STC core under area constraint.
Smart TV System will lead to drastic change of communication and media industries as one of the emerging next generation network services. However, when the number of concurrent users increases rapidly, the issue of service quality degradation occurs because providing services to many users simultaneously stresses both the server and the network. The server limitation can be circumvented by deploying server clusters. but the network limitation is far less easy to cope with, due to the difficulty in determining the cause and location of congestion and in provisioning extra resources. In order to alleviate these problems, a number of schemes have been developed. Prior works mostly focus on reducing user-centric performance metrics of individual connection, such as the round-trip time(RTT), downloading time or packet loss rate, but tend to ignore the network loads caused by the concurrent connections or global network load balance. In this work, we make an in-depth investigation on the issue of user grouping for massive Smart TV services through simulations on actual Internet test-bed, PlanetLab.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.