• Title/Summary/Keyword: Determination tool

Search Result 549, Processing Time 0.029 seconds

A Study on Mechanical Characteristics of Interface of Ceramic/Metal Composites (세라믹/금속 이종재료 계면의 기계적 특성에 관한 연구)

  • Seo, Do-Won;Kim, Hak-Kun;Song, Jun-Hee;Lim, Jae-Kyoo;Park, Chan-Gyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.121-126
    • /
    • 2000
  • Metal/Ceramic structures have many attractive properties, with great potential for applications that demand high stiffness, as well as chemical and biological stability, thermal and electrical insulation. They are currently in use for mechanical and thermal protection in cutting tool and engine parts. With all their great advantage, ceramics suffer from one major problem they are brittle, and are especially susceptible to cracking from surface contacts. Delamination at the interfaces with adjacent layers is a particularly disturbing problem, and can cause premature failure of a composite system. so determination of adhesive properties of coating is one of the most important problems for the extension of the use of coated materials. In this work, mechanical characteristics of Interface of ceramic/Metal composites are evaluated by means of hardness test, indentation test apparent interfacial toughness and bonding strength test. The interface indentation test provides a relation between the applied load(P) and the length of the crack(a) created at the interface between the coating and the substrate.

  • PDF

Robust Control of Dual Arm Robot with Eight Joint Based-on Self-Organization Fuzzy Control (자기구성 퍼지제어에 의한 8축 로봇의 강인제어)

  • 신행봉;김종수;김홍래;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.187-192
    • /
    • 2004
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules. The proposed SOFC scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for robot with eight joints.

  • PDF

Real-Time Fuzzy Control for Dual-Arm with 8 Joints Robot Using the DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 8축 듀얼 아암 로봇의 실시간 퍼지제어)

  • 한성현;김종수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-47
    • /
    • 2004
  • In this paper presents a new approach to the design and real-time implementation of fuzzy control system based-on digital signal processors(DSP:IMS320C80) in order to improve the precision and robustness for system of industrial robot(Dual-Arm with 8 joint Robot). The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The IMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller(SOFC) for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a FLC(Fuzzy Logic Controller), one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult SOFC is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed SOFC scheme is simple in structure, Int in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

Comparison of Calibrations using Modified SWAT Auto-calibration Tool with Various Efficiency Criteria (다양한 검증 지수를 이용한 SWAT 자동 보정 비교 평가)

  • Kang, Hyun-Woo;Ryu, Ji-Chul;Kim, Nam-Won;Kim, Seong-Joon;Engel, Bernard A.;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.19-19
    • /
    • 2011
  • The appraisals of hydrology model behavior for flow and water quality are generally performed through comparison of simulated data with observed ones. To perform appraisal of hydrology model, some criteria are often used, such as coefficient of determination ($R^2$), Nash and Sutcliffe model efficiency coefficient (NSE), index of agreement (d), modified forms of NSE and d, and relative efficiency criteria NSE and d. These criteria are used not only for hydrology model estimations also for various comparisons of two data sets; This NSE has been often used for SWAT calibration. However, it has been known that the NSE value has some limitations in evaluating hydrology at watersheds under monsoon climate because this statistic is largely affected by higher values in the data set. To overcome these limitations, the SWAT auto-calibration module was enhanced with K-means clustering and direct runoff/baseflow modules. However the NSE is still being used in this module to evaluate model performance. Therefore, the SWAT Auto-calibration module was modified to incorporate alternative efficiency criteria into the SWAT K-means/direct runoff-baseflow auto-calibration module. It is expected that this enhanced SWAT auto-calibration module will provide better calibration capability of SWAT model for all flow regime.

  • PDF

A Conceptual Framework for Determination of Appropriate Business Model in e-Learning Industry in Iran

  • Salehinejad, Abbas;Samizadeh, Reza
    • Asian Journal of Business Environment
    • /
    • v.7 no.4
    • /
    • pp.17-25
    • /
    • 2017
  • Purpose - The purpose of this study is to present a framework for determining the most appropriate business model for e-learning. Research design, data, and methodology - The Electronics Branch of Azad University has been elected as a case study in this research. This study conducted using a descriptive method. The information was obtained using interviews with experts including managers, faculty and students at the Electronics Branch of Azad University. Results - Three service-product system (product oriented system, use an oriented and result oriented system) approaches determined a framework for the formation of a portfolio. This portfolio is including three types of e-learning business models. Examining the relevant characteristics, correspondence of behaviorism learning theory with a product-oriented approach, correspondence of cognitivism theory with a user-oriented approach and in finally match correspondence of constructivist learning theory with a results-oriented approach which is evident. Conclusions - After reviewing the literature on the fields of e-learning, business model and product - service systems, we have achieved three types of e-learning business models. Then the variables in any of the business models were defined by using business model canvas tool and thus a portfolio consisting of three types of e-learning business model canvas was obtained.

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 AM1 로봇의 위치 및 속도 제어)

  • Kim, Jong-Su;Chung, Yun-Gyo;Han, Seong-Hyeon;Lee, Jin;Chang, Yeong-Hui
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.102-107
    • /
    • 2000
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In tile synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

A Study on Determination of an Optimum Riparian Buffer Zone Based on Analytical Hierarchy Process (계층분석법을 이용한 적정 수변구역 결정에 관한 연구)

  • Han, Haejin;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.555-562
    • /
    • 2004
  • This paper presents the development and application of a riparian buffer zone design model(RBZDM). The model was developed as a decision-making tool for watershed management, by integrating geographic information system(GIS) and analytical hierarchy process(AHP) theory. Several factors for watershed management, such as pollution removal capacity, land aquisition cost, distribution of point and non-point pollution sources, and possibility of new pollution source location, were analyzed based on AHP theory. The vegetated buffer zone width was designed using GIS-based riparian buffer analysis. The developed model was applied to the Kyoungan Stream watershed, which is an important part of Paldang lake catchment area. The Kyoungan stream watershed was divided into sixteen subbasins. Six of them belong to the main stem, where the model was applied. Ten alternatives of buffer zone width and five hierarchial levels were designed. The relative importance and the relative preference were computed by pair-wise comparison of evaluation criteria given in hierarchial levels. The buffer zone width was determined by linear function of the given alternatives and relative preferences. From this study, it was determined that the six buffer zone widths of Kyoungan main stems would be 1,594, 1,744, 1,856, 1,782, 1,338, 1,780 meter, from upstream to downstream.

Analysis of Practical Dynamic Force of Structure with Inverse Problem (역문제에 의한 구조물의 실동하중 해석)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

Auto-calibration for the SWAT Model Hydrological Parameters Using Multi-objective Optimization Method (다중목적 최적화기 법을 이용한 SWAT 모형 수분매개변수의 자동보정)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Park, Seung-Woo;Choi, Ji-Yong;Yang, Hee-Jeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.

Hydrodynamic Analysis at Nakdong River Confluences (낙동강 주요 합류부에서의 동역학적 수리해석)

  • Han, Kun Yeun;Kim, Ji Sung;Yang, Seung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.908-911
    • /
    • 2004
  • The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers. In this study, two dimensional unite element model, SMS, is used to simulate a complex flow along with the sediment movements in the natural river. The RMA-2 model embeded in SMS is used to simulate flow phenomena and SED-2D model is employed to simulate sediment transport. The model is applied to the confluence zone of the Gam River and mouth of Nakdong River. For model calibration, the result of the unsteady flow analysis is compared with the Typhoon 'Rusa' data. In addition, the runoff analysis was conducted for the determination of the project flood and the flood forecasting. The simulation results presented the characteristics of two dimensional flow with velocity vector and flow depth. The sediment transport characteristics are shown in terms of sediment concentration as well as bed elevation change. Accordingly, the SMS model in this study turned out to be very effective tool for the simulation of the hydrodynamic characteristics under the various flow conditions and corresponding sediment transports in natural rivers.

  • PDF