• Title/Summary/Keyword: Deterioration factors

Search Result 650, Processing Time 0.027 seconds

Structural Deterioration of Educational Buildings in Reinforced Concrete Structure : Area Seoul (철근콘크리트조 교육시설물의 열화성상에 관한 조사 연구 - 서울지역 초.중등교를 중심으로 -)

  • Kwon, Ki-Hyuk
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.4 no.3
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of this study is to present basic data in order to improve the efficiency and the objectivity of diagnosing educational structures built with the reinforced concrete. For achieving the purpose, this paper, firstly, researches damage aspects of 22 public educational of facilities in Seoul, and summarizes the results of that research. Through the analysis and the evaluation of damage aspects, this paper shows the conclusions as follows; (1) Main damage to reduce structural capacities of building is the differential settlement. (2) Though the steel corrosion is occurred by several factors, the main cause is the faulty construction. (3) To prevent the damage development, a proper repair strategy is very important.

  • PDF

Development of Wasteless Mold for rubber molding Part (고무 성형제품의 Wasteless 금형 개발에 대한 연구)

  • Choi N.J.;Huh Y.M.;Kang S.S.;Park S.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • The application of rubber produt is a quite extensive field and has several problems in point of mass-production. The inhibitive factors at the general rubber mold are occurrence of flash, loss of raw material by curing for sprue and runner, environmental pollution by scrap junked after extraction of product and the unavailable mold structure for automation. The existence of flash at the rubber mold requires extra-process for removing or finishing it. As the reason, we can't help avoiding deterioration of quality and rising of cost. Hence we promptly need to research fur the efficient structure of mold and the preventive transforming technique of the flash without any loss of raw material in advance. This monograph is a study for Wasteless rubber mold that give us a solution for several problems happened at the general rubber mold.

  • PDF

Evaluation of Chloride Resistance with Application Method of Coating Materials Using Electric Acceleration Test (코팅재료의 도포 특성에 따른 전기적 촉진을 통한 염해 저항성 평가)

  • Kim Myung Yu;Yang Eun Ik;Yeon Kyu Seok;Joo Myung Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.551-554
    • /
    • 2005
  • The durability of concrete is decreased by various deterioration factors such as a crack, spalling, corrosion. Many repair and rehabilitation methods have been introduced to extend service life of RC structure. An application of coating material is one of repair and rehabilitation methods. However, there is a problem due to reduction of bonding strength and damage of coating material in the case of existed coating material. Thus, this paper is aim to investigate the chloride resistance according to application method of coating material which improve the existed problem. According to the results, it is showed that application of coating material reduces diffusion of chloride into concrete. In special, application of MMA polymer showed the best resistance for chloride attack. However, variation of application method and number of times has a minor effect on chloride diffusion.

  • PDF

Analysis on Penetration of Chloride Ion into Carbonated Concrete in Marine Atmospheric Conditions (해양 대기 환경 하에서 탄산화 콘크리트에 대한 염소이온 침투 해석)

  • Choi, Doo-Man;Jang, Seung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.233-236
    • /
    • 2006
  • Chloride attack and carbonation induced corrosion of reinforcement are those of the main factors which cause the deterioration of concrete structures. The objective of this study is to suggest an analytic model for the prediction of chloride penetration into carbonated concrete, in order to make up for the current codes. Carbonation depth model considering the moisture effect is validated by being compared with the test data and the analytic model on chloride penetration into carbonated concrete is developed. Finally, the corrosion-initiation time has been predicted by the present model, being compared with that by the current code equation. The comparison shows that the current code equation can underestimate the chloride penetration into carbonated concrete in marine atmospheric conditions.

  • PDF

Effect of Carbonation Threshold Depth on the Initiation Time of Corrosion at the Concrete Durability Design (콘크리트의 내구성 설계시 탄산화 임계깊이가 철근부식 개시시기에 미치는 영향에 관한 연구)

  • Yang, Jae-Won;Lee, Sang-Hyun;Song, Hun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.229-230
    • /
    • 2010
  • The Carbonation, one of the main deterioration factors of concrete, reduces capacity of members with providing rebar corrosion environment. Consequently it suggested standards of all countries of world, carbonation depth prediction equation of respective researchers and time to rebar corrosion initiation. As a result of carbonation depth prediction equation calculation, difference of time to rebar corrosion initiation is 149 years and difference of carbonation depth prediction equation is 162 years when water cement ratio is 50%. So a study on rebar corrosion with carbonation depth will need existing reliable data and verifications by experiment.

  • PDF

Physical Properties of Concrete mixed with Fine Sand and Copper Slag (동슬래그 혼합 잔골재를 이용한 콘크리트의 물리적 특성)

  • 이진우;김경민;배연기;이재삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.15-18
    • /
    • 2003
  • Development of the construction industry generally exhausts natural aggregate. Hence it is problem to the lack of supply and quality deterioration, so the resource saving and protection of environment is made an effort through recycling by-product. This study presents that fundamental properties of concrete which used cooper slag as alternate sand of low fineness modulus and plan of cooper slag as concrete aggregate. Testing factors are concrete's slump, air contents, unit weight and compressive strength. The results of this study are as follows; (1) Concrete slump is generally satisfied with the condition but is inferior to the others in substitution rates 30%. Also air contents are 3.1-4.1% and go up according to increase substitution rate. (2) Unit weight increase in 1.1% as the mixing ratio of cooper slag argument 10%. (3) compressive strength of cooper slag concrete is similar to plain and especially higher 11-15% in W/C 45%, 50%. So it seems that aggregate mixed cooper slag is suitable to low water-cement ratio mixture.

  • PDF

Diffusion of Chloride Ions and Evaluation of Lifetime in Highway Bridges (고속도로 교량의 염소이온확산 특성과 공용수명 평가)

  • Shin Jae In;Park Chang Ho;Lee Byeong Ju;Lim Hong Beam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.663-666
    • /
    • 2005
  • Chloride attach is one of the main factors which cause the deterioration of structures. In the case highway bridges, de-icer salts very significantly increase the surface scaling due to frost action. The deteriorated concrete is subject to experience degrading of durability under chloride attach environment. In this study, diagnosis report of 147 bridges is investigated and core sample of 21 bridge decks is examined and analyzed. The results show that the cover of decks concrete is required more than 8cm for retaining bridge lifetime over 30 years.

  • PDF

The Analysis of the Situation of Residential Area and Difficulties in Developing (도심 주거지의 실태와 개발 장애요인 분석)

  • 임준홍;김한수
    • Journal of the Korean housing association
    • /
    • v.14 no.1
    • /
    • pp.51-59
    • /
    • 2003
  • This study is to analyze the situation of residential area in Down Town and to research any factor of difficulty in developing residential area. First, we can summarize briefly in consequence of analyzing the residential environment classified with apartment and independent house in Down Town. 1) The apartment houses located in Down Town were constructed long ago on a small scale. The field investigation shows that parking lots are not enough and there are many spaces used inappropriately. 2) Each detached house was too old and built in narrow spaces. The irregular narrow lanes between houses also cause problems in walking and parking. And empty houses are found in that area. Second, the brief results of analyzing difficulties in developing the residential area in Down Town are as follows. 1) The land and buildings have difficulty in reconstruction because of the deterioration. 2) The economical efficiency is low though it is developed as a residential area. 3) There are some factors that they don't like to live in Down Town. 4) The law system is not enough to support the development of the residential area in Down Town

An optimal production run length in a deteriorating machine (퇴화하는 기걔에서의 품질 불량을 고려한 최적 생산시간 결정)

  • 김창현;홍유신
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.290-293
    • /
    • 1996
  • This paper presents an EMQ model which determines an optimal production run length in a deteriorating machine. It is assumed that a machine is subject to a random deterioration from an in-control state to an out-of-control state with an arbitrary distribution and thus producing constant proportion of defective items. An average cost function and an optimal production run length are determined. A mistake in previous model is found and discussed. A mistake in previous model is found and discussed. Numerical experiments are carried out to see the behavior of the proposed model depending on the cost factors as well as machine parameters, and some interesting behaviors are observed.

  • PDF

Effect of Liquid Subcooling on Pool Boiling Heat Transfer in Vertical Annuli with Closed Bottoms (액체과냉도가 하부폐쇄 수직환상공간 내부의 풀비등 열전달에 미치는 영향)

  • Kang Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.239-246
    • /
    • 2005
  • Effects of subcooling on pool boiling heat transfer in vertical annuli with closed bottoms have been investigated experimentally. For the test, a tube of 19.1mm diameter and the water at atmospheric pressure have been used. Three annular gaps of 7.05, 18.15, and 28.20 have been tested in the subcooled water and results of the annuli are compared with the data of a single unrestricted tube. The increase in pool subcooling results in much change in heat transfer coefficients. At highly subcooled regions, heat transfer coefficients for the annuli are much larger than those of a single tube. As the heat flux increases and subcooling decrease, a deterioration of heat transfer coefficients is observed at the annulus of 7.05mm gap. Single-phase natural convection and liquid agitation are the governing mechanisms for the single tube while liquid agitation and bubble coalescence are the major factors at the bottom closed annuli.