• Title/Summary/Keyword: Deterioration condition

Search Result 720, Processing Time 0.027 seconds

Monitoring Technology on the Surface Condition after Conservation Treatment of Stone Cultural Heritage (석조문화재의 보존처리 후 표면상태 모니터링 기술 연구)

  • Park, Sung Mi;Chun, Yu Gun;Lee, Myeong Seong
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.32-48
    • /
    • 2013
  • This study examined the applicability of deterioration monitoring techniques to establish efficient conservation and management system for stone cultural heritage which conservation treatment has been done. It was confirmed that deterioration mapping combined with photography and grid work, and adhesive tape test for the surface were very applicable to investigate the surface change due to deterioration, and assess the degree of granular disintegration quantitatively. The portable microscopic survey and ultrasonic measurement were efficient techniques to observe mineral looseness and microcrack, and to track the strength change of the stone before-and-after the conservation treatment. These techniques can be easily used by manage practitioners in the field through simple guidance and technical education. Also, it can contribute to build a long-term and methodical conservation and management system of the stone cultural heritage.

  • PDF

A Study on Improvement of Inspection Activity Based upon Condition Analysis of Expressway Bridges (고속도로 교량의 상태 분석에 근거한 점검 활동 개선에 관한 연구)

  • Jeon, Jun Chang;Lee, Il Keun;Park, Chang Ho;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • In this paper, detailed safety inspection reports on the 915 expressway bridges which had been published from 1996 to 2010 are collected and condition of these bridges are analyzed. Damages are categorized into 'damage by defect', 'damage by physical force', and 'damage by deterioration' and the concept of damage possession rate is introduced to investigate the occurrence time and the characteristics of damages. Based on the top 10 damage patterns of expressway bridges and the deterioration characteristics of heavy snow and freezing cold area, reasonable improvement direction of inspection activity is suggested. From this study, it is known that improvement of inspection regularization during construction or at completion stage of bridges is needed. Since the deterioration progress of the heavy snow and freezing cold area is faster than that of general area, environmental characteristics should be considered in inspection activity. The results of present study can be widely used for improvement of inspection activity of expressway bridges.

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

Analysis of cause and deterioration about using 3-Arch tunnel (공용중인 3-Arch터널의 열화조사 및 원인분석)

  • Lee, Yu-Seok;Park, Sung-Woo;Whang, In-Baek;Shin, Yong-Suk;Kim, Sun-Gon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • This paper studied the cause of the deterioration of the four 3-Arch tunnels built in mid-1990. The common deteriorations of the four 3-Arch tunnels were longitudinal cracks, leakage and efflorescence at the same parts of lining concrete. Three fourths of 3-Arch tunnels, there was high percentage longitudinal cracks and a quarter was low frequency about longitudinal cracks. So the material reviewed to find out the differences between two groups in construction process and analysis was conducted such as non-destructive testing, precise visual survey and safety evaluation of one tunnel which had bad ground condition As the result, the tunnels were safety condition and the primary deterioration occurred during the construction process, namely, problems arrangement of rebar and the effects of the blast at middle tunnel.

A study on the Analysis of Actual Condition of Residental Environment for the Eldery Residing in Daejeon (대전시 노인의 거주환경실태 조사연구)

  • 박정아;이지숙
    • Journal of the Korean housing association
    • /
    • v.15 no.1
    • /
    • pp.175-183
    • /
    • 2004
  • The purpose of this study was to identify the actual condition of residential environment for the elderly residing in Daejeon. The data were collected through interviews and structured questionnaires. The sujects were 583 elderly people over the age of 65 in Daejeon. Sociodemographic characteristics, living characteristics, housing characteristics, neighborhood environment types, actual usage condition of neighborhood environment, relationship between sociodemographic characteristics and actual usage of neighborhood environment, actual condition of unit interior, were surveyed. The data were analyzed with frequency, percentage, χ²-test, mean using the SPSS package. The major findings were as follows. Features of unit interior which pointed generally were deterioration, soundproofing and size. Features of unit interior which need to be carefully planned were removal of height difference of entrance, removal of the thresholds, installation of emergency bell and room heating control facility. The facilities provided highly within the subject's residential environment were the eldery facility, church, hospital, bank, restaurant, beauty salon/barbershop, supermarket. and the facilities provided lowly were recreational facility, library, elderly school.

Analysis of Insulation Diagnosis and Failure in Stator Windings of Air-Cooled Gas Turbine Generator

  • Kim, Hee-Dong;Kong, Tae-Sik;Kim, Kyeong-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.421-424
    • /
    • 2016
  • In order to evaluate the insulation deterioration in the stator windings of air-cooled gas turbine generators(119.2 MVA, 13.8 kV) which has been operating for more than 15 years, diagnostic test and AC dielectric breakdown test were performed on phases A, B and C. Diagnostic test included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B, and C) of generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable condition. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. Although phase A of generator stator windings failed at breakdown voltage of 29.0 kV, phases B and C endured the 29.0 kV. The breakdown voltage in all three phases was higher than that expected for good-quality windings (28.6 kV) in a 13.8 kV class generator.

Evaluation for mechanical hardness of gas turbine rotor bolt according to deterioration of specimen (시편의 열화에 따른 가스터빈 로터볼트 기계적 강도평가)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.19-24
    • /
    • 2011
  • The operational efficiency of domestic gas turbine is about 25% and it is now in the trend of the gradual growth in spite of the severe temperature, frequent starting and shutdown according to the environmental management and the energy-efficient use. Rotor bolts of gas turbine in power plants have been the cause of defects because these gas turbines have been operated for a long time under the high pressure and temperature environment experiencing the aging change and stress concentration of the bonded part. The connection parts of the bolt revealed various failure shape and these parts were elongated under very low pressure when operated in the relaxed condition. The cause is in the lack of the metal distribution in the bottle lack area and the cap screw of the bolt is broken totally in case that the nut is fastened in most cases. Gas turbine rotor bolts are connected to the rotor wheel and these bolts caused the vibration, the bulk accident of the rotor in the event that the coupling power among these bolts was relaxed. Therefore, we would like to evaluate the soundness of the main part of the gas turbine rotor bolt through the measurement of the inner condition change along with the mechanic deterioration and temperature, stress in the gas turbine rotor material.

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.

A study on availability of GPR in estimating the condition of ballast (자갈도상 상태평가를 위한 GPR기법의 적용성 분석)

  • Lee, Choon-Kil;Kim, Nam-Hong;Woo, Byoung-Koo;Kim, Kwan-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.494-499
    • /
    • 2007
  • The ballast, one of a track components, plays an essential role as intermedium in transmitting train traffic-load to subgrade safely, and deterioration of ballast caused by cumulative load effects growth of track irregularity. Especially in the case of Gyeongbu high-speed railway, the deteriorating speed of ballast by dynamic vibration is faster than conventional line because KTX is longer than normal trains in length and it's velocity is very fast with high speed of 300km/h as well. In addition, ballast is a nonlinear material contrary to ordinary metal which has homogeneous property and this property of ballast may cause transformation of ballast. Therefore the theoretical modeling of ballast is quite complicated and it is hard to ensure the reliability of the result. The objective of this paper is to examine the availability of GPR(Ground Penetrating Radar) in estimating the thickness and the degree of deterioration of ballast. First, We figured out the principle of GPR which is the technique of evaluating the condition of ballast and then analyzed data which were measured at Gyeongbu high-speed railway where KTX is running now.

  • PDF

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.