• Title/Summary/Keyword: Deterioration Condition

Search Result 717, Processing Time 0.037 seconds

Evaluation of Deterioration on Steel Bridges Based on Bridge Condition Ratings

  • Park, Chan-Hee
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2004
  • Recent developments in Bridge Management Systems (BMS) and in Life-Cycle Cost (LCC) of bridges, have raised the need for evaluation procedure of future condition (Deterioration) of a bridge. Predicting future deterioration is not an easy task due to limited past data to extrapolate from and also due to difficulty in measuring actual deterioration such as section loss of steel on an actual steel bridge. Also, increase in live load and reduction of resistance are random variables, thus a probabilistic approach should be adopted for determining the future deterioration. Due to difficulties in evaluation of future deterioration on steel bridges, accepting uncertainties within a reasonable error, a deterministic procedure using bridge condition rating can be a useful tool for projection of future condition of bridges to identify repair and maintenance needs. The object of this paper is to determine applicability of evaluating deterioration of steel bridge components based on Bridge condition ratings. Bridge condition ratings of bridge components show wide variation for bridges of same age and does not directly correlate well with the age of the bridge and/or deterioration of the bridge. High uncertainty can be reduced by breaking down the rating and by sensitivity analysis. From refined condition rating data, generalized deterioration profile of structures based on age can be derived. Examples are shown for sample bridges in USA. Approximately, 3,000 short to medium span steel bridges were listed in the inventory database. Results show wide variation of rating factors but by subdividing the Bridge condition ratings for various categories general deterioration profiles of steel bridges can be determined.

Internal Property and Stochastic Deterioration Modeling of Total Pavement Condition Index for Transportation Asset Management (도로자산관리를 위한 포장종합평가지수의 속성과 변화과정의 모델링)

  • HAN, Daeseok;DO, Myungsik;KIM, Booil
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • PURPOSES : This study is aimed at development of a stochastic pavement deterioration forecasting model using National Highway Pavement Condition Index (NHPCI) to support infrastructure asset management. Using this model, the deterioration process regarding life expectancy, deterioration speed change, and reliability were estimated. METHODS : Eight years of Long-Term Pavement Performance (LTPP) data fused with traffic loads (Equivalent Single Axle Loads; ESAL) and structural capacity (Structural Number of Pavement; SNP) were used for the deterioration modeling. As an ideal stochastic model for asset management, Bayesian Markov multi-state exponential hazard model was introduced. RESULTS:The interval of NHPCI was empirically distributed from 8 to 2, and the estimation functions of individual condition indices (crack, rutting, and IRI) in conjunction with the NHPCI index were suggested. The derived deterioration curve shows that life expectancies for the preventive maintenance level was 8.34 years. The general life expectancy was 12.77 years and located in the statistical interval of 11.10-15.58 years at a 95.5% reliability level. CONCLUSIONS : This study originates and contributes to suggesting a simple way to develop a pavement deterioration model using the total condition index that considers road user satisfaction. A definition for level of service system and the corresponding life expectancies are useful for building long-term maintenance plan, especially in Life Cycle Cost Analysis (LCCA) work.

IMPROVING RELIABILITY OF BRIDGE DETERIORATION MODEL USING GENERATED MISSING CONDITION RATINGS

  • Jung Baeg Son;Jaeho Lee;Michael Blumenstein;Yew-Chaye Loo;Hong Guan;Kriengsak Panuwatwanich
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.700-706
    • /
    • 2009
  • Bridges are vital components of any road network which demand crucial and timely decision-making for Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support system (DSS), have been developed since the early 1990's to assist in the management of a large bridge network. Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the prediction accuracy of bridge deterioration models.

  • PDF

Research on Assessment Method of Deterioration Condition for Power Transformer Using Sweep Frequency Response Analyzer (주파수응답분석기를 이용한 전력용 변압기 열화상태 평가방법 연구)

  • Gil, Hyoung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.30-35
    • /
    • 2013
  • This paper describes the assessment method of deterioration condition for a power transformer using SFRA. Frequency Response Analysis(FRA) is a method to evaluate the mechanical and geometrical integrity of the core and windings within a power transformer by measuring the electrical transfer functions over a wide frequency range. SFRA is sweep frequency response analyzer for power transformer winding diagnosis. The FRA is a comparative method, that evaluates the transformer condition by comparing the obtained set of FRA results to reference results on the same, or a similar, unit. FRA techniques were widely used and much more sensitive than the traditional and internationally accepted method of impedance measurements, but that work was required on standardization and interpretation. In order to analyze the deterioration condition for power transformer, overvoltage test and mechanical distortion test were carried out. The deterioration condition for power transformer was evaluated by SFRA. It is intended to present the elemental technology of assessment method for power transformer using SFRA.

A Study on the Analysis and Evaluation of Deterioration Factors for the Structure of Reinforced Concrete Apartment According to Actual Condition Survey (철근콘크리트조 아파트구조물의 노후도 실태조사에 의한 노후화 요인 분석.평가에 관한 연구)

  • 강석표;김규용;권영진;정성철;이덕찬;송병창;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.391-396
    • /
    • 1998
  • The concrete structures are hardly ever built under ideal conditions. So many defects may occur for a various reasons such as unsuitable and defective materials, construction methods, poor workmanship, particular structural form and prevailing weather conditions. Some structural form can greatly increase the risk of occurrence of defects. Therefore we investigated the actual condition of the deterioration factors for reinforced concrete apartment, which was composed of 85 apartments with various building ages in different regions with five evaluation the deterioration factors of apartment building to establish the overall evaluation system of deterioration degree for reinforced concrete apartment in Korea.

  • PDF

A Condition Based Maintenance Model for Systems with Weibull Distributed Deterioration (와이블 분포로 열화하는 시스템의 상태에 기초한 정비모형)

  • Kong, Myung Bock;Park, Il Gwang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.70-75
    • /
    • 2007
  • This paper discusses condition based preventive replacement for deteriorating systems. The system continuouslydeteriorates in time and fails at any deterioration level which is always monitored, It is replaced at failure or atsome deteriorated level preventively before failure. The deterioration process is represented by a Weibulldistribution with a time-linear scale parameter. The cost rate function is formed considering replacement costand opportunity loss cost and deterioration dependent failure distribution, If the system has an increasingdeterioration dependent failure rate, the optimal deterioration level for preventive replacement can be determinedfrom minimizing the cost rate. An illustrative example is given for a Weibull deterioration dependent failuredistribution.

A Study on the Combined Deterioration of Concrete subjected to Freezing-Thawing and Chloride Attack (동해와 염해를 동시에 받는 콘크리트의 복합열화에 관한 연구)

  • Kim Eun-Kyum;Choi Sang-Deok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.225-228
    • /
    • 2005
  • This paper was accomplished for analyzing the reason of the above deterioration happened on the deck of concrete bridge. The bridge was constructed at 660m above the sea level having more freezing and snowing days. Therefore, it is placed on the particular condition sprinkling $CaCl_2$ enough for keeping up with moderate traffic condition. When it is considered to the former condition, the bridge can be assumed to potentialities for combined deterioration with freezing-thawing under sprinkling deicing chemical. Core specimens were gathered from the concrete deck for clearing the reason of the above deterioration exactly, and it is used for various tests for measuring the compressive strength, elastic modulus, content of $Cl^-$, freezing-thawing at the fresh and salt water. As a result of freezing-thawing test, the specimen at the fresh water has over 90$\%$ of durability factor, but another specimen at 1$\%$ of salt water has 0$\%$ of durability factor at 140 cycles of the freezing-thawing. The result means that frost damage is sccelerated at the salt water. Therefore, the deterioration of the concrete deck is estimated to be occured by combined effects of freezing-thawing and chloride ion attack.

  • PDF

A Study on the Deterioration Patterns of Building Components in the Rental Apartment Housing (임대공동주택 구성재의 열화도 패턴에 관한 연구)

  • Lee Kang-Hee
    • Journal of the Korean housing association
    • /
    • v.17 no.4
    • /
    • pp.65-72
    • /
    • 2006
  • Most of buildings have been deteriorated with time-elapse by reflection of the building location, material, environmental circumstances and so on. The performance would go down and be demolished if anything could not be done after constructed. The maintenance should be required to preserve a decent living condition or improve a inferior condition by various plans and practices. The maintenance plan needs various data such as a repair scope, a repair time, a forecasted cost, a plan of management and so forth. Among the above required data for planning the maintenance, the deterioration characteristics of the building components would be first analyzed. The deterioration pattern would be a key role to affect and make a maintenance plan. In this paper, it aimed at classifying the deterioration patterns of building components. A deterioration pattern would be analyzed between the cumulative repair cost and time-elapse and modeled with these relations. A deterioration patterns are classified into 4 types-a accelerated type, a straight type, a temporary type and a slowly type. As a result of this research, a accelerated type includes window, window frame, general paintings, general water proofing in building components. A straight type includes the lacquer paintings, furnishings in building components and water supply pipe, boiler, sanitaries in mechanical facilities and lighting in electric facilities. Based on these research results, further study should be conducted to include any other components and an estimating model.

Use of Nondestructive Evaluation Methods in Bridge Management Systems (교량유지관리시스템에 있어서 비파괴 시험의 효율적 활용 방안)

  • 심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1291-1296
    • /
    • 2000
  • A basis for the direct use of data from nondestructive evaluation methods in bridge management systems is presented. Bridge management systems use integer-valued condition ratings to recognize conditions of bridge elements, to model progression of deterioration, and to determine repair needs. Data from nondestructive evaluation methods can inform management systems on the extent of damage, on the initiation of deterioration processes, and on the exposure of bridge elements to aggressive agents. In addition, data obtained through nondestructive evaluation methods allow the formation of models of specific deterioration process. The use of these data in bridge management systems requires redefinition of condition ratings together with the creation of procedures for automated interpretation of data. By these action, nondestructive evaluation methods are directly used to assign condition ratings, and condition ratings are made into terse form of NDE data that are compatible with present day bridge management systems. This paper reports work in progress to strategic use of nondestructive evaluation methods in bridge management system.

Determination of Ratio of Wood Deterioration Using NDT Technique

  • Lee, Jun-Jae;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2004
  • In ancient wooden structures, the mechanical properties of the structural members have been reduced by time-dependent degradations such as fatigue or creep. Also, the external and internal deterioration was caused by environmental condition, fungi, bacteria, or insect, and then reduced the quality of structural members. However, the previous methods for evaluating the deterioration have been mainly depended on the visual inspection. In this study, therefore, ultrasonic stress wave test, accelerometer stress wave test were used to evaluate the deterioration of structural wood members in ancient wooden structures. Based on the results, the quantitative criteria of stress wave transmitted velocity were proposed to evaluate the deterioration of structural member. The proposed criteria were related to the degree of deterioration. In accelerometer stress wave, the criteria of deterioration of wave reciprocal velocity was below 1800 ㎲/m at incipient deterioration (below 12% ratio of deterioration), between 1800 and 2200 ㎲/m at moderate deterioration (12~17%) and above 2200 ㎲/m at severe deterioration (above 17%). The ultrasonic stress wave, the criteria of deterioration were 800 and 950 ㎲/m at below 8% and above 15% of the degree of deterioration respectively.