• Title/Summary/Keyword: Deteriorated concrete

Search Result 349, Processing Time 0.034 seconds

Fundamental and Harmonic Wave Characteristics of Concrete Subjected to Temperature by Strength (고온이력을 받은 콘크리트의 강도별 기본파와 고조파 특성)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Son, Min-Jae;Sasui, Sasui;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.207-208
    • /
    • 2021
  • The non-destructive method using ultrasonic waves has been applied in many studies due to its low damage to the structure and its simple evaluation method and high precision. On the other hand, if the concrete is subjected to a high-temperature, the mechanical properties may be deteriorated due to the micro-crack network and the damage may be severe depending on the strength of the concrete. Therefore, this study attempts to evaluate the fundamental wave behavior of different strength ranges using the ultrasonic non-destructive method for concrete that has been subjected to high-temperature. As a result, the relative power of the fundamental wave was decreased as temperature increase. And it was confirmed that the 2nd and 3rd harmonics were generated at 110 MPa. However, to check the 2nd, 3rd harmonics 110 MPa or less, there is a need for further research considering the ultrasonic output, the output of the sender and receiver, and the appropriate frequency accordingly.

  • PDF

Assessment of masonry arch bridges retrofitted by sprayed concrete under in-plane cyclic loading

  • Mahdi Yazdani;Mehrdad Zirakbash
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2024
  • Masonry arch bridges as a vital infrastructure were not designed for seismic loads. Given that masonry arch bridges are made up of various components, their contribution under the seismic actions can be very undetermined and each of these structural components can play a different role in energy dissipation. Iran is known as a high-risk area in terms of seismic excitations and according to the seismic hazard zoning classification of Iran, most of these railway infrastructures are placed in the high and very high seismicity zones or constructed near the major faults. Besides, these ageing structures are deteriorated and thus in recent years, some of these bridges using various retrofitting approaches, including sprayed concrete technique are strengthened. Therefore, investigating the behavior of these restored structures with new characteristics is very significant. The aim of this study is to investigate the cyclic in-plane performance of masonry arch bridges retrofitted by sprayed concrete technique through the finite element simulation. So, by considering the fill-arch interaction, the nonlinear behavior of a bridge has been investigated. Finally, by extracting the hysteresis and enveloping curves of the retrofitted and non-retrofitted bridge, the effect of strengthening on energy absorption and degradation of material has been investigated.

A Study on the Filed application of Environmental Friendly Porous Concrete For Retaining Wall (환경친화 옹벽용 포러스콘크리트의 현장적용성에 관한 연구Ⅱ)

  • Kim, Jeong-Hwan;Lee, Nam-Ik;Lee, Jun;Park, Seung-Bum;Jang, Young-Il;Seo, Dae-Suck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.817-820
    • /
    • 2008
  • The river environments of many streams in korea have been deteriorate through the rapid industrialization and urbanization since the 1960s. In korea, on the other hand, much efforts on the research and project have been made for the restoration of the deteriorated streams to close-to-nature. in order to restore the deteriorated streams, therefore, it is necessary to investigate such advanced technologies and materials. In view of this requirement, various research paths are being taken focusing on coarse aggregates to make multi-functional porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification and applicability to vegetation. The Purpose of this study is to investigate the method for recovery of the environment in the streams area using porous concrete retaining wall block. the multi-P.O.C block applies for test in the Jangduri-cheon have been monitored planting, stability etc. after 6 months, plant grows flourishing and reconstructed in state such as nature rivers.

  • PDF

Effect of Impressed Current System for Corrosion Protection of Rebars in Concrete (콘크리트 중의 철근 부식 억제를 위한 외부전원법의 효과)

  • Moon, Han-Young;Kim, Seong-Soo;Kim, Hong-Sam
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.221-230
    • /
    • 1999
  • Corrosion of rebars can occur if there are cracks, moisture and availability of oxygen or carbonation proceeds, chloride penetrates and diffuses in concrete. Once rebars in concrete corrodes, subsequently accompanied with scaling, spalling in concrete cover. As a result of them, the RC structure is seriously deteriorated. In this study, theoretical review and experiments for cathodic protection(CP) have been performed to control corrosion of rebars in concrete contained chlorides and pre-crack. For CP the impressed current system was applied, the protection effect was investigated when rebars was directly contacted with salt water due to crack and open to much chlorides in concrete. In order to investigate the effect of protection, when CP was energized for 1 year, half-cell potential, potential-decay with current density, corrosion ratio, etc. were measured. With the cathodic protection by impressed current system, the depolarized values of all specimen were met NACE Standard, the effect of 34~84% of the ratio of corrosion area and 84~86% of cross-section reduction were calculated.

Porosity and Abrasion Resistance of Concrete Coated by Surface enhanced type Water Repellent (표면강화형흡수방지재 적용 콘크리트의 기공률 및 내마모성 특성)

  • Park, Myungju;Noh, Jaeho;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.31-36
    • /
    • 2019
  • Concrete is a material generally used to build structures and it is exposed to various environment conditions. In particular, a medium such as water lets noxious factors flow into concrete, causing a lot of damage. Therefore, different kinds of materials are being developed to increase the durability of concrete. Among such materials, silane and siloxane compound are known to have a high utilization as an absorption inhibitor. However, if aged or deteriorated reinforced concrete is treated with those compounds, they easily come off the concrete and lose their function since the basic material is weak. This study conducted an experiment to provide concrete with both an absorption-inhibiting effect and surface strengthening by using melamine-formaldehyde resins that are surface-treated with siloxane compound. In addition, a study on the porosity and surface hardness characteristics of a concrete was conducted to check the absorption-inhibiting effect and surface strengthening.

A Study on the Possibility of Using Concrete Blocks with Ready Mixed Concrete Sludge (레미콘 슬러지를 활용한 콘크리트블록 활용에 대한 기초 연구)

  • Jung, Jae-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.307-312
    • /
    • 2019
  • Sludge generated in the production of ready-mixed concrete is classified as waste and processed at a high cost. In particular, small and medium-sized ready-mix manufacturer are burdened with such costs, and some companies are illegally processing them. Therefore, the purpose of this study is to suggest a method for recycled remicon sludge as a concrete block composition. When the remicon sludge is simply dried, the residual chemical admixture and ettringitee contained in the sludge are present, so that the compressive strength of the concrete block and the compressive strength after freezing and thawing are largely deteriorated to meet the quality standards of the concrete shore and retaining wall block It was not possible to do. As a method for satisfying the physical performance, it was found that the remicon sludge was calcined at a high temperature of about $900^{\circ}C$. to decompose ettringite and residual chemical admixture and then used it.

Characterization of deterioration of concrete lining in tunnel structures (터널 콘크리트 라이닝 구조물의 성능저하 특성)

  • Kim, Dong-Gyou;Jung, Ho-Seop;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.387-394
    • /
    • 2009
  • The objective of this study is to evaluate the durability and deterioration of concrete lining in the seven conventional tunnels. These tunnels were constructed about 40~70 years ago, and closed about 10~40 years ago. The field investigation and various laboratory testings were performed for this study. It was observed from the visual, examinations that the concrete linings of 7 tunnels were severely deteriorated, such as, cracks, leakages, desquamation, and exploitations. The compressive strengths obtained from rebound hardness method and uniaxial compressive strength test on core specimens largely differed depending on the locations in the tunnel. The maximum compressive strength of concrete lining was greater about 2 times than the minimum compressive strength of concrete lining in the same tunnel. The results of micro-structural analysis showed that the substances deteriorating the concrete lining, such as ettringite and thaumasite, were detected in the concrete lining of tunnel.

An Experimental Study on the Physical Properties of Concrete Spread with Liquefied Organic and Inorganic Complex Antibiotics (액상 유·무기 복합 항균제를 도포한 콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kim, Mu-Han;Kim, Jae-Hwan;Jo, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, physical properties of concrete spread with antibiotics were investigated. As a results of the study, it was proved that the antimicrobial performance of antibiotics was available. Also compressive strength and bond strength of concrete didn't closely connected with antibiotics, and resistance to abrasion, water absorption and air permeability of concrete was improved remarkably by spraying with it.

A Study on the Properties of Fire Endurance and Spalling of High Performance RC Column with the Finishing and Covering Material (고성능 RC 기둥의 마감재 변화에 따른 폭열 및 내화특성에 관한 연구)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Ji, Suk-Won;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.143-152
    • /
    • 2006
  • High performance concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However, spalling is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper investigated the spalling prevention of high performance RC column. Control concrete showed severe failure and a case of concrete with fire enduring spraying material exhibited more severe spalling failure than even control concrete. In addition, concrete with fire enduring paint reported the most favorable spalling resistance effect for preventing spall, compared with other concrete covered with finishing materials, such as fire enduring spraying material, gypsum board, marble board and fire enduring PC board. Meanwhile, concrete adding 0.1% of PP fiber demonstrated spalling resistance performance after 3hours load bearing test.

Development of the Smart Concrete Using Electric Resistance (전기 저항을 이용한 스마트 콘크리트의 개발)

  • 김화중;김이성;김형준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.447-453
    • /
    • 2004
  • Various structural materials have been used in construction projects using stones, connotes, and steels materials. Among of these projects, concretes may use widely because concretes have high compressive strength, and comparatively easy maintenance and management. Reinforced concrete Buildings will be deteriorated as time passed. These problems will be accelerated by propagation of cracks. In order to manage such cracks, time, efforts and expense are required. In this study, leakages of fluorescence and adhesive material were investigated using glass sensors that were embedded in a model beam and column. In addition, currents in glass pipe sensor were observed to find leakage of liquid in glass pipes. Progressive cracks were generated by fracture of glass me sensor. In this investigation, a reinforcement clothing system was wrapped for a glass pipe sensor, The glass pipe sensor that can make control and reinforce cracks simultaneously.

  • PDF