• Title/Summary/Keyword: Detergents

Search Result 234, Processing Time 0.024 seconds

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

Monitoring of Methanol Levels in Commercial Detergents and Rinse Aids (시판 세척제 및 헹굼보조제 중 메탄올 함량 모니터링)

  • Park, Na-youn;Yang, Heedeuk;Lee, Jeoungsun;Kim, Junghoan;Park, Se-Jong;Choi, Jae Chun;Kim, MeeKyung;Kho, Younglim
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.263-268
    • /
    • 2019
  • Methanol is a toxic alcohol used in various products such as antifreeze, detergent, disinfectant and industrial solvent. In the human body, methanol is oxidized to formaldehyde and formic acid, which can lead to metabolic acidosis, optic nerve impairment, and death. In this study, the methanol levels in detergents (n=191) and rinse aids (n=13) were analyzed by gas chromatography-headspace-mass spectrometry (GC-HS-MS). Limit of detection was 1.09 mg/kg, accuracy and precision were 91.1-97.9% and <10%, and it was suitable for quantitative analysis. This analysis method was simple and fast with a higher recovery rate than the conventional MFDS (Ministry of Food and Drug Safety) method of diluting the sample in water and putting it in a headspace vial.

Purification and Properties of $\gamma$-Glutamyl Transpeptidase from Bacillus sp. KUN-17

  • Hwang, Se-Young;Ryang, Jun-Hwan;Lim, Wang-Jin;Yoo, Ick-Dong;Kunio Oishi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.238-244
    • /
    • 1996
  • $\gamma$-Glutamyl transpeptidase ($\gamma$-GTP; EC 2.3.2.2) present in the culture filtrate of Bacillus sp. KUN-17 was purified 400-fold through a consecutive procedure including organic precipitation and column chromatography. The enzyme has an estimated molecular weight of 70, 000 and consists of hetero-subunits with molecular weights of 42, 000 and 22, 000. In vitro optimal conditions for those transfer and hydrolysis reactions appeared to be pH 7.0 at $50^{\circ}C$ and pH 8.4 at $40^{\circ}C$, respectively. The denatured enzyme recovered most of its $\gamma$-GTP activity by removing detergents such as sodium dodecyl sulfate (SDS) or urea with dialysis. The enzyme showed higher affinities against a number of amino acids as $\gamma$-glutamyl acceptors than glycylglycine in the following order: L-valine, L-methionine, L-glutamic acid or L-as-paragine, L-alanine. Also, it was shown that L-glutamine was the most suitable $\gamma$-glutamyl donor for the transfer reaction among those tested. Amino acids generally inhibited the enzyme activity for the transfer reaction, but not for the hydrolysis reaction.

  • PDF

Physicochemical and Dyeing Properties of Microbial Prodiginine from Zooshikella sp. (미생물 Prodiginine 색소의 물리화학적 특성 및 섬유염색성)

  • Kim, Yong-Sook;Choi, Jong-Myoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.4
    • /
    • pp.431-441
    • /
    • 2011
  • Microbial colorants produced from Zooshikella sp. were developed as a reddish dye for fabrics. The reddish colorants were extracted from cell mass of Zooshikella sp. using 100% ethanol and were identified as prodiginine by 1H-NMR and FT-IR analysis. Microbial prodiginine had a maximum spectrophotomatric absorbance at 530nm and were chemically stable and 30 to $60^{\circ}C$. The microbial prodiginine could dye natural fibers such as cotton, silk, and wool as well as synthetic fibers such as nylon. The maximum K/S values of the dyed fiber were shown at 540 run with a color appearance of RP (reddish purple). Silk and nylon had an excellent dyeability among the experimental fibers. The optimum pH for the dyeing of experimental fibers was at pH 3.0 and dyeability was improved as the temperature increased. The cover change of dyed multifiber fabrics with the microbial prodiginine were measured after washing with detergents and a dry cleaning solvent for the selection of a proper fabric against microbial prodiginine. Among the experimental fibers, silk and nylon did not show significant color change after washing. Therefore, under the criteria of dyeability, silk and nylon were excellent fabrics for being dyed by microbial prodiginine.

Functional Analysis of the marB gene of Escherichia coli K-12

  • Lee, Chang-Mi;Park, Byung-Tae
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.153-161
    • /
    • 2004
  • Antibiotic resistance is often associated with the production of inner membrane proteins (for example, AcrAB/TolC efflux pump) that are capable to extrude antibiotics, detergents, dyes and organic solvents. In order to evaluate the unknown MarB function of Escherichia coli, especially focused on the function of OmpF porin, several mutants were construted by T4GT7 transduction. MarA plays a major roles in mar (multiple antibiotic resistance) phenotype with AcrAB/TolC efflux pump in E. coli K-12. Futhermore, MarA decreases OmpF porin expression via micF antisense RNA. Expression of acrAB is increased in strains containing mutation in marR, and in those carrying multicopy plasmid expressing marA. MarB protein of E. coli K-12 showed its activity at OmpF porin & TolC protein as target molecule. Some paper reported MarB positively regulates OmpF function. MarA shows mar phenotype, and MarB along with MarA show decreased MIC through OmpF function. By this experiment, MarB could decrease MIC through the OmpF porin & TolC protein as target.

  • PDF

Study on the characterization of dissolved organic matters by XAD resin fractionation (XAD 수지분획에 의한 용존유기물질 특성 연구)

  • Park, Jeong-Min;Heo, Seong-Nam;Im, Tae-Hyo;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.4
    • /
    • pp.23-32
    • /
    • 2007
  • Changes in the characteristics of dissolved organic matter was studied at selected stations in the Nakdong river basin using physical and chemical methods. Characteristics of dissolved organic matters were analysed and assessed. Production of disinfection byproducts were also investigated. Distribution of the organic compounds according to the Molecular weight(MW) indicate that MWs higher than 100K were highest with cattle excrement wastewater and MW between 100-10K were highest with waters from forest streams. Low MW compounds (Jess than 1K) were highest with the effluents from environmental facilities. Results of resin fractionation study show that acidic hydrophobic substances(AHS) were dominant in many stations. The values were higher in the samples from mainstreams and sidestreams where the influence of organic matter is higher than the water from environmental facilities. Hydrophilic neutral substances(HoN) such as hydrocarbon, pesticides and detergents were higher in the wastewater treatment facilities. HoN values of water from the forest streams were 4.7% indicating there is no synthetic pollutant.

Reconstitution of Sarcoplasmic Reticulum-$Ca^{2+}$ Release Channels into Phospholipid Vesicles : Investigation of Conditions for Functional Reconstitution

  • Yang, In-Sik;Lee, Hee-Bong
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.129-137
    • /
    • 1995
  • The ryanodine-receptor $Ca^{2+}$ release channel protein in the sarcoplasmic reticulum membrane of rabbit skeletal muscle plays an important role in muscle exitation-contraction (E-C) coupling. Various types of detergents were tested, including Chaps, cholate, octylglucoside, Zwittergents, Mega-9, Lubrol PX, and Triton X-100 for solubilization of this protein. Among these, Chaps and Triton X-100 were found to optionally solubilize the channel complex. Optimum conditions for this solubilization were pH 7.4 with a salt concentration of 1 M. The addition of phospholipid in the solubilization step helped in stabilizing the protein. The purification of the receptor was performed using sucrose density gradient centrifugation. Various methods [dilution, freeze-thaw, adsorption (Biobeads), and dialysis] were investigated to incorporate the Chaps-solubilized and purified $Ca^{2+}$ release channel protein into liposomes made from different types of phospholipids. Of these, a combined method consisting of a dialysis, freeze-thaw and sonication steps yielded the best results. Reconstituted vesicles produced by this method with 95% phosphatidylcholine (from soybean extract) had good function.

  • PDF

Detergent Screening for NMR-Based Structural Study of the Integral Membrane Protein, Emopamil Binding Protein (Human Sterol Δ8-Δ7 Isomerase)

  • Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • Human sterol ${\Delta}8-{\Delta}7$ isomerase, commonly known as emopamil binding protein (EBP), is an essential protein in the cholesterol-synthetic pathway, and mutations of this protein are critically associated with human diseases such as Conradi-Hunermann-Happle or male EBP disorder with neurological defects syndrome. Due to such a clinical importance, EBP has been intensively investigated and some important features have been reported. EBP is a tetra-spanning membrane protein, of which $2^{nd}$, $3^{rd}$, and $4^{th}$ membrane-spanning ${\alpha}$ helices play an important role in its enzymatic function. However, detailed structural feature at atomic resolution has not yet been elucidated, due to characteristic difficulties in dealing with membrane protein. Here, we over-expressed EBP using Escherichia coli and performed detergent screening to find suitable membrane mimetics for structural studies of the protein by NMR. As results, DPC and LMPG could be evaluated as the most favorable detergents to acquire promising NMR spectra for structural study of EBP.

Alteration of hepatic anti-oxidant systems by 4-nonylphenol, a metabolite of alkylphenol polyethoxylate detergents, in Far Eastern catfish Silurus asotus

  • Park, Kwan Ha
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.6.1-6.7
    • /
    • 2015
  • Objectives This study aimed to estimate the effects of 4-nonylphenol (NP), a ubiquitously present surfactant in aquatic environments, on the anti-oxidant systems of the liver in the Far Eastern catfish Silurus asotus. Methods Changes in biochemical parameters involved in glutathione (GSH)-related and other anti-oxidant systems were analyzed following 4 weeks of 4-NP administration (0.1 and 1.0 mg/kg diet) via a formulated diet to catfish. Results 4-NP exposure induced an elevation in hepatic lipid peroxide levels and an accompanying decrease in reduced state GSH after 2 weeks, suggesting pro-oxidant effects of the chemical in catfish. This oxidative stress was associated with an inhibition of the GSH-utilizing enzyme glutathione peroxidase at the same time point. This inhibition was restored after 4 weeks. The activities of other anti-oxidant enzymes, i.e., glutathione reductase, superoxide dismutase and catalase were increased after 4 weeks. These enzyme increases occurred more strongly at the higher 4-NP concentration (1.0 mg/kg diet). Conclusions 4-NP given to catfish at 0.1 to 1.0 mg/kg diet, concentrations relevant to environmental levels, depletes the endogenous anti-oxidant molecule GSH and temporarily inhibits GSH-related anti-oxidant enzymes. Such declines in anti-oxidant capacity and elevated oxidative stress seem to be compensated eventually by subsequent activation of various anti-oxidant enzyme systems.

Enhancement of Succinate Production by Organic Solvents, Detergents, and Vegetable Oils

  • Kang, Kui-Hyun;Ryu, Hwa-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • Bioconversion of fumarate to succinate by Enterococcus sp. RKY1 was enhanced when Tween surfactant, organic solvent, and vegetable oil were added to the fermentation medium. The maximum amount of succinate produced was 80.4 g/l after a 24 h incubation when Tween 80 was added to the culture to a final concentration of 0.1 g/l. Triton X-l00 was observed to damage the enzymes and inhibit the formation of succinate. The addition of 10 ml/l acetone increased the production of succinate by 110%. Vegetable oils used were found to be effective for succinate production as well as for the cell growth. Similar productivity increases were obtained with corn oil and Tween 80 plus biotin with the total productivity being 3.6 g/l/h, and 3.5 g/l/h, respectively, which was approximately 25% greater than that of the control. Therefore, these results indicate that com oil can be considered the most appropriate agent for the production of succinate where succinic acid was primarily used in the production of food, medicine, and cosmetics.

  • PDF