• Title/Summary/Keyword: Detector size effect

Search Result 62, Processing Time 0.028 seconds

A study of detector size effect using Monte Carlo simulation

  • Park, Kwang-Yl;Yi, Byong-Yong;Vahc, Young W.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.36-38
    • /
    • 2004
  • The detector size effect due to the spatial response of defectors is one critical source of inaccuracy in clinical dosimetry and has been a subject of numerous studies. Conventionally, the detector response kernel contains all of the influence that the detector size has on the measured beam profile. Various analytic models for this kernel have been proposed and studied in theoretical and experimental works. Here, we use a method to determine detector response kernel simply by using Monte Carlo simulation and convolution theory. Based on this numerical method and DOSIMETER, an EGS4 Monte Carlo code, the detector response for a Farmer type ion chamber embedded in water phantom is obtained. There exists characteristic difference in the simulated chamber readings between one with carbon graphite wall and the other with Acrylic wail. Using the obtained response and the convolution theory, we are planning to derive the detector response kernel numerically and remove detector size effect from measurements for 6MV, 10${\times}$l0cm2 and 0.5${\times}$10 cm2 photon beam.

  • PDF

Deconvolution of Detector Size Effect Using Monte Carlo Simulation (몬데카를로 시뮬레이션을 이용한 검출기의 크기효과 제거)

  • Park, Kwangyl;Yi, Byong-Yong;Young W. Vahc
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.100-104
    • /
    • 2004
  • The detector size effect due to the spatial response of detectors is a critical source of inaccuracy in clinical dosimetry that has been the subject of numerous studies. Conventionally, the detector response kernel contains all the information about the influence that the detector size has on the measured beam profile. Various analytical models for this kernel have been proposed and studied in theoretical and experimental works. Herein, a method to simply determine the detector response kernel using the Monte Carlo simulation and convolution theory has been proposed. Based on this numerical method, the detector response kernel for a Farmer type ion chamber embedded in a water phantom has been obtained. The obtained kernel shows characteristics of both the pre-existing parabolic model proposed by Sibata et al. and the Gaussian model used by Garcia-Vicente et al. From this kernel and deconvolution technique, the detector size effect can be removed from measurements for 6MV, 10${\times}$10 $\textrm{cm}^2$ and 0.5${\times}$10 $\textrm{cm}^2$photon beams. The deconvolved beam profiles are in good agreements with the measurements performed by the film and pin-point ion chamber, with the exception of in the tail legion.

  • PDF

Effects of the Reference Sample Size on the Performance of the Two-Sample Rank Detector (두 표본 순위 검파에서 기준 표본 크기가 검파기 성능에 미치는 영향)

  • Bae, Jinsoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1515-1517
    • /
    • 2015
  • The effects of the reference sample size on the detection probability of the two-sample rank detector is investigated in this paper. The larger reference sample size shows the better performance of the detector. The effect is also shown to be saturated as the reference sample size becomes larger.

Influence of CT Reconstruction on Spatial Resolution (CT 영상 재구성의 공간분해능에 대한 영향)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Computed tomography, which obtains section images from reconstruction process using projection images, has been applied to various fields. The spatial resolution of the reconstructed image depends on the device used in CT system, the object, and the reconstruction process. In this paper, we investigates the effect of the number of projection images and the pixel size of the detector on the spatial resolution of the reconstructed image under the parallel beam geometry. The reconstruction program was written in Visual C++, and the matrix size of the reconstructed image was $512{\times}512$. The numerical bar phantom was constructed and the Min-Max method was introduced to evaluate the spatial resolution on the reconstructed image. When the number of projections used in reconstruction process was small, artifact like streak appeared and Min-Max was also low. The Min-Max showed upper saturation when the number of projections is increased. If the pixel size of the detector is reduced to 50% of the pixel size of the reconstructed image, the reconstructed image was perfectly recovered as the original phantom and the Min-Max decreased as increasing the detector pixel size. This study will be useful in determining the detector and the accuracy of rotation stage needed to achieve the spatial resolution required in the CT system.

Design and Simulation of Depth-Encoding PET Detector using Wavelength-Shifting (WLS) Fiber Readout

  • An, Su Jung;Kim, Hyun-il;Lee, Chae Young;Song, Han Kyeol;Park, Chan Woo;Chung, Young Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.305-310
    • /
    • 2015
  • We propose a new concept for a depth of interaction (DOI) positron emission tomography (PET) detector based on dual-ended-scintillator (DES) readout for small animal imaging. The detector consists of lutetium yttrium orthosilicate (LYSO) arrays coupled with orthogonal wavelength-shifting (WLS) fibre placed on the top and bottom of the arrays. On every other line, crystals that are 2 mm shorter are arranged to create grooves. WLS fibre is inserted into these grooves. This paper describes the design and performance evaluation of this PET detector using Monte Carlo simulations. To investigate sensitivity by crystal size, five types of PET detectors were simulated. Because the proposed detector is composed of crystals with three different lengths, degradation in sensitivity across the field of view was also explored by simulation. In addition, the effect of DOI resolution on image quality was demonstrated. The simulation results proved that the devised PET detector with excellent DOI resolution is helpful for reducing the channels of sensors/electronics and minimizing gamma ray attenuation and scattering while maintaining good detector performance.

상부 Au 전극 면적 Size에 따른 PbI2 필름의 전기적 특성 평가

  • Myeong, Ju-Yeon;Park, Jeong-Eun;Kim, Dae-Guk;Kim, Gyo-Tae;Jo, Gyu-Seok;O, Gyeong-Min;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.374-374
    • /
    • 2014
  • 의료용 X-ray는 과거 analog 방식과, 연구가 진행 중이며 현재 많이 사용되고 있는 digital 방식으로 나누어진다. 최근, 광도전체와 형광체 기반의 flat panel X-ray detector의 발전에 따른 상용화가 이루어지고 있으며, 많은 발전 가능성이 제기되고 있다. flat panel X-ray detector 검출방식은 direct method (직접 방식)와 indirect method (간접 방식)로 나누어진다. 본 연구는 일반적으로 상용화 되어있는 amorphous seleinum (비정질 셀레늄)의 큰 일함수에 의한 저 해상력이라는 단점을 보완하기 위해, 작은 일함수를 가지는 물질을 사용하여, 영상을 얻을 시에 높은 해상력으로 표현할 수 있도록 하고, 원자번호가 높은 물질을 사용하여 X-ray 흡수율을 높일 수 있도록 기존 direct method에 많이 사용되고 있는 amorphous seleinum 기반 digital X-ray detector가 아닌, 이러한 장점을 충족시킬 수 있는 PbI2 물질 층을 사용하여 시편을 제작 하였다. PbI2를 같은 두께로 올린 후, 물질 층 상부에 Au 전극 면적을 다른 size로 제작한 시편으로 X-ray에 노출 시켰다. 이는 상부 전극 size 차이에 따른 신호 차이를 측정하여 전기적 특성을 평가하기 위한 것이다. 전도성을 띠고 있는 ITO (Indium - Tin - Oxide) glass를 이용하여 screen printing 방법으로 제작하였다. PbI2층을 약 160~180 um두께, $3cm{\times}3cm$ size로 5개 제작하였으며, 상부 전극으로는 Au를 진공 증착 시켰다. 상부 전극 size는 각각 시편 5개에 $0.5cm{\times}0.5cm$, $1cm{\times}1cm$, $1.5cm{\times}1.5cm$, $2cm{\times}2cm$, $2.5cm{\times}2.5cm$로 PbI2 물질 층 중앙에 증착 시켰다. 이러한 설정으로 X-ray 노출 시 관찰할 수 있는 PbI2의 전기적인 특성을 평가할 수 있었다. 관전압을 40 kVp, 60 kVp, 80 kVp, 100 kVp, 120 kVp, 140 kVp로 설정하고, 관전류는 100 mA로 설정하였으며, Dark current, Sensitivity를 측정하였다. Dark current와 Sensitivity를 측정한 뒤, 그 값을 이용하여 SNR (신호 대 잡음 비)값을 구해보았다.실험 결과 단위면적당 signal과 SNR을 분석할 수 있었다. 80 kVp로 기준을 잡고 결과 값을 보면 $0.5cm{\times}0.5cm$ 시편에서 2.92 nC/cm2, $2.5cm{\times}2.5cm$ 시편에서 0.84 nC/cm2로 상부 전극 크기가 작을수록 더 좋은 신호를 측정할 수 있었다. 똑같은 기준에서 SNR을 계산 해 보았을 때, $0.5cm{\times}0.5cm$ 시편에서 6.46, $2.5cm{\times}2.5cm$ 시편에서 1.91로 SNR역시 상부 전극 크기가 작을수록 더 큰 값을 확인할 수 있었다. 이러한 결과는 edge-effect의 영향으로 인해 나온 결과라고 할 수 있다. 이러한 실험 결과, detector 제작 시, 같은 물질을 사용하여 더 높은 효율을 내기 위해서는 큰 size의 상부 전극 보다는 작은 size의 상부 전극을 증착 시키는 것이 전기적 특성을 더욱 효율적으로 평가할 수 있을 것이라고 사료된다.

  • PDF

The Analysis of the Information Capacity of Digital Radiography System (디지탈 X-선 촬영 시스템의 정보용량 분석)

  • 김종효;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 1991
  • In this paper, the information capacity, the intergrate performance measure of digital radiography system has been quantitatively analyzed. The effect of various factors affecting the information capacity of the digital radiography system in multistage detection processes has been considered and analyzed In detail. The results show that the more information capacity can be obtained with the smaller detector cell area, despite of the reduced signal to noise ratio due to the reduced number of X ray photons per detector cell. Considering the limit of human visual acuity, however. the sufficient resolution will be obtained when the detector cell size in $0.2{\times}0.2\textrm{mm}^2$ with 8 bit quantizaion. And also the results indicates that the information capacity may be severely reduced by the mixture of electric noise in final read-out stage.

  • PDF

병원관리 전산화

  • 김윤상
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.49-50
    • /
    • 1982
  • In this paper, the information capacity, the intergrate performance measure of digital radiography system has been quantitatively analyzed. The effect of various factors affecting the information capacity of the digital radiography system in multi-stage detection processes has been considered and analyzed in detail. The results show that the more information capacity can be obtained with the smaller detector cell area, despite of the reduced signal to noise ratio due to the reduced number of X-ray photons per detector cell. Considering the limit of human visual acuity. however, the sufficient resolution will be obtained when the detector cell size in 0.2${\times}$0.2mm with 8 bit quantizaion. And also the results indicates that the information capacity may be severely reduced by the mixture of electric noise in final read-out stage.

  • PDF

Study on the Influence of Mixing Effect to the Measurement of Particle Size Distribution using DMA and CPC (혼합효과가 DMA와 CPC를 이용한 입자분포 측정에 미치는 영향에 관한 연구)

  • Lee, Youn-Soo;Ahn, Kang-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.326-333
    • /
    • 2003
  • In the measurement using DMA and CPC in series, there is some time delay for particles classified in DMA to detect in CPC. During this time, the DMA time-response changes due to the velocity profile of sampling tube and the diffusion of particles in the volume that exists between the DMA exit and the detector of ultra-fine CPC. This is called mixing effect. In the accelerated measurement methods like the TSI -SMPS, the size distribution is obtained from the correlation between the time-varying electrical potential of the DMA and the corresponding particle concentrations sampled in DMA. If the DMA time -response changes during this delay time, this can cause the error of a size distribution measured by this accelerated technique. The kernel function considering this mixing effect using the residence time distribution is proposed by Russell et al. In this study, we obtained a size distribution using this kernel to compare to the result obtained by the commercial accelerated measurement system, TSI -SMPS for verification and considered the errors that result from the mixing effect with the geometric mean diameters of originally sampled particles, using virtually calculated responses obtained with this kernel as input data.