• Title/Summary/Keyword: Detector sensitivity

Search Result 427, Processing Time 0.027 seconds

The $CH_4$and $C_4$$H_{10}$ Sensitivity Measurement and Voltage Variation Using Catalytic Combustion Type Gas Sensor (접촉연소식 센서를 이용한 $CH_4$$C_4$$H_{10}$ 감도 측정 및 전압변화)

  • 윤헌주;신종열;홍진웅
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.44-48
    • /
    • 2001
  • In this study, we analyzed the $CH_4$and $C_4$$H_{10}$ sensitivity measurement and voltage variation using catalytic type gas sensor characteristics in catalytic combustion type gas detecter sensors. Gas detector shall operate as intended when exposed for 24 hours to air having a relative humidity of 65 percent at a temperature of $20^{\circ}c$ and humidity of 85 percent at a temperature of $40^{\circ}c$. The gas detecter sensors are to be subjected to operation for 210 days in an area that has been determined to be equivalent to a typical residential atmosphere with an air velocity of 50 cm/sec. The source of energy for a gas detector sensors employing a supplementary basic circuit is energized from a seperate source of supply direct applied voltage 2.1V, 2.2V, 2.3V. As a result, it was confirmed that the relative humidity and temperature by regression each analysis, compared to the isobutane characteristic graph and methane characteristic graph by a relative humidity of 65% and 85% at a temperature($20^{\circ}c$, $40^{\circ}c$) show a similar linear pattern on the whore.

  • PDF

The Study of Air Sampling Smoke Detector (공기흡입형 연기감지장치에 관한 연구)

  • 이복영;이병곤
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-91
    • /
    • 2003
  • Since the air stream in the room controlled by HVAC system affects on he expected response of conventional detectors which are designed in accordance with normal characteristics of air stream in the fire incident, unexpected operation time delay may occur in fire. In order to solve this problem and to improve sensitivity so that to initiate fire in its early stages for minimizing damage and protecting people, we studied and developed Air Sampling Smoke Detector. The Air Sampling Smoke Detector is a kind of active-type fire detection system. it draws air continuously from the protected area through an air sampling pipe network to the smoke density analyzer. This study presents smoke density analysing technique and air intake balancing technique through an air sampling pipe network. As a result of evaluating, Air Sampling Smoke Detector was much more sensitive than conventional smoke detectors that passively wait for smoke to reach them and was not affected by ambient airflow in the room by means of balanced air intake through the sampling holes.

A Study on the Development of Standardization Tester for the Field Inspection of the Rate of Rise Spot Type Heat Detector (차동식스포트형열감지기 현장점검용 표준화기기 개발에 관한 연구)

  • Kim, Shi-Kuk;Yuk, Hyun-Dai;Yang, Seung-Hyun;Jee, Seung-Wook;Lee, Chun-Ha
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.85-92
    • /
    • 2009
  • This paper studied on the development of standardization tester for the field inspection of the rate of rise spot type heat detector. It was to find the problems of the 4 type's testers such as A type (electric bulb type), B type (halogen lamp type), C type (heating coil type), D type (fumigator type) which were used to check of the rate of rise spot type heat detector in inspection for the fire protection. To identify those problems, this paper described about the development of standardization tester for the field inspection of the rate of rise spot type heat detector and that have the function of auto setting temperature more $30^{\circ}C$ higher than room temperature and keep the constant temperature. And keep the constant wind velocity of 85cm/sec. Performance verification results of the developed prototype that had same conditions such as the sensitivity test conditions at the type approval of the rate of rise spot type heat detector.

Assaying of SNM using Simultaneous Detection of Fission Neutrons and Gammas by Employing a Novel Phoswich Detector

  • Sonu;Mohit Tyagi;A. Kelkar;A. Sahu;M. Sonawane;P.S. Sarkar;A. Pandey;D.B. Sathe;G.D. Patra;T. Vincent;S.G. Singh;R.B. Bhatt
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2662-2669
    • /
    • 2023
  • For the precise measurements of special nuclear materials (SNM) including Pu and Am isotopes, we have used phoswich detector combination of two single crystal scintillators of Gd3Ga3Al2O12:Ce and CsI:Tl. High detection efficiency and sensitivity along with high figure of merit for the discrimination of these phoswich detectors ensures the detection and discrimination of thermal neutrons and gammas from spontaneous fission of Pu and other isotopes in presence of high gamma background. Using this detector, the low energy gammas, which is stopped completely in 1mm thick disc of GGAG, can be also discriminated from high energies gamma and shows linearity in wide range of sample quantities. By changing only the appropriate shielding, the similar setup was used for thermal neutron detection and shows a very good linearity over wide range. The quantity of a test sample was also calculated accurately by using the measured calibrated plot.

The Study of New Reconstruction Method for Brain SPECT on Dual Detector System (Dual detector system에서 Brain SPECT의 new reconstruction method의 연구)

  • Lee, Hyung-Jin;Kim, Su-Mi;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: Brain SPECT study is more sensitive to motion than other studies. Especially, when applying 1-day subtraction method for Diamox SPECT, it needs shorter study time in order to prevent reexamination. We were required to have new study condition and analysing method on dual detector system because triple head camera in Seoul National University Hospital is to be disposed. So we have tried to increase image quality and make the dual and triple head to have equivalent study time by using a new analysing program. Materials and Methods: Using IEC phantom, we estimated contrast, SNR and FWHM. In Hoffman 3D brain phantom which is similar with real brain, we were on the supposition that 5% of injected doses were distributed in brain tissue. To compare with existing FBP method, we used fan-beam collimator. And we applied 15 sec, 25 sec/frame for each SEPCT studies using LEHR and LEUHR. We used OSEM2D and Onco-flash3D reconstruction method and compared reconstruction methods between applied Gaussian post-filtering 5mm and not applied as well. Attenuation correction was applied by manual method. And we did Brain SPECT to patient injected 15 mCi of $^{99m}Tc$-HMPAO according to results of Phantom study. Lastly, technologist, MD, PhD estimated the results. Results: The study shows that reconstruction method by Flash3D is better than exiting FBP and OSEM2D when studied using IEC phantom. Flowing by estimation, when using Flash3D, both of 15 sec and 25 sec are needed postfiltering 5 mm. And 8 times are proper for subset 8 iteration in Flash3D. OSEM2D needs post-filtering. And it is proper that subset 4, iteration 8 times for 15sec and subset 8, iteration 12 times for 25sec. The study regarding to injected doses for a patient and study time, combination of input parameter-15 sec/frame, LEHR collimator, analysing program-Flash3D, subset 8, iteration 8times and Gaussian post-filtering 5mm is the most appropriate. On the other hands, it was not appropriate to apply LEUHR collimator to 1-day subtraction method of Diamox study because of lower sensitivity. Conclusions: We could prove that there was also an advantage of short study time effectiveness in Dual camera same as Triple gamma camera and get great result of alternation from existing fan-beam collimator to parallel collimator. In addition, resolution and contrast of new method was better than FBP method. And it could improve sensitivity and accuracy of image because lesser subjectivity was input than Metz filter of FBP. We expect better image quality and shorter study time of Brain SPECT on Dual detector system.

  • PDF

Direct Detection Receiver for W-Band Radiometer (W-대역 라디오미터를 위한 Direct Detection 수신기)

  • Moon, Nam Won;Lee, Myung-Whan;Jung, Jin Mi;Kim, Yong Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.426-429
    • /
    • 2017
  • For the W-band remote sensing radiometer, direct detection type radiometer receiver is designed. The receiver should be low noise and high gain of 60 dB unlike communication and radar receiver. The W-band radiometer consist of 4-stage low noise, high gain amplifier, band pass filter and square law detector. The developed direct detection receiver show 4 GHz bandwidth, 56 dB gain, and 4,500 mV/mW voltage sensitivity at integrator output port for -20 dBm input power at 94 GHz.

Multivariate Auxiliary Channel Classification using Artificial Neural Networks for LIGO Gravitational-Wave Detector

  • Oh, Sang-Hoon;Oh, John J.;Kim, Young-Min;Lee, Chang-Hwan;Vaulin, Ruslan;Hodge, Kari;Katsavounidis, Erik;Blackburn, Lindy;Biswas, Rahul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.131.2-131.2
    • /
    • 2011
  • We present performance of artificial neural network multivariate classifier in identifying non-astrophysical origin noise transients from the gravitational wave channel of Laser Interferometer Gravitational-wave Observatory (LIGO). LIGO has successfully conducted six science runs, achieving the sensitivity as planned and producing many fruitful scientific results. It has been well observed that the detector noise is non-Gaussian and non-stationary, which results in large excess of noise transients called glitches arising from instrumental and environmental artifacts. Great efforts have been committed to reduce the glitches by tuning the detector instruments and by vetoing them but further improvement is still needed. To this end, there have been efforts to incorporate data from hundreds of auxiliary, physical and environmental channels into identifying the glitches in the gravitational wave channel. We introduce a multivariate classification method using Artificial Neural Networks (ANNs) that efficiently handles large number of variables. In this poster, we present preliminary results of the application of our ANN algorithm to data from LIGO's Science Run 4 and compare its performance with conventional vetoing method.

  • PDF

A Gas Chromatographic Detector using Glow Discharge (글로우 방전을 이용한 기체크로마토그라피 검출기)

  • Han Chong Soo;Song, Seung Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.350-354
    • /
    • 1991
  • Characteristics of a gas chromatographic detector using glow discharge as the ionization source was studied in helium flow. Discharge current greater than 10$_6$ A was observed from the electric field 400 V/mm for the electrode distance 1 mm. The discharge current of 0.1~0.3 mA could be used for the detection of organic compounds. Discharge current was almost constant for the helium flow rate greater than 10 ml/min, but the discharge was easily disappeared by an injection of a small amount of organic compound in the flow rate of 0~30 ml/min. From the decrement of the discharge current depend on several compounds, it was suggested that the sensitivity of the glow discharge ionization chromatographic detector is strongly influenced by the molecular weight of the compounds.

  • PDF

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Artificial neural network reconstructs core power distribution

  • Li, Wenhuai;Ding, Peng;Xia, Wenqing;Chen, Shu;Yu, Fengwan;Duan, Chengjie;Cui, Dawei;Chen, Chen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.617-626
    • /
    • 2022
  • To effectively monitor the variety of distributions of neutron flux, fuel power or temperatures in the reactor core, usually the ex-core and in-core neutron detectors are employed. The thermocouples for temperature measurement are installed in the coolant inlet or outlet of the respective fuel assemblies. It is necessary to reconstruct the measurement information of the whole reactor position. However, the reading of different types of detector in the core reflects different aspects of the 3D power distribution. The feasibility of reconstruction the core three-dimension power distribution by using different combinations of in-core, ex-core and thermocouples detectors is analyzed in this paper to synthesize the useful information of various detectors. A comparison of multilayer perceptron (MLP) network and radial basis function (RBF) network is performed. RBF results are more extreme precision but also more sensitivity to detector failure and uncertainty, compare to MLP networks. This is because that localized neural network could offer conservative regression in RBF. Adding random disturbance in training dataset is helpful to reduce the influence of detector failure and uncertainty. Some convolution neural networks seem to be helpful to get more accurate results by use more spatial layout information, though relative researches are still under way.