• Title/Summary/Keyword: Detection of low elevation

Search Result 15, Processing Time 0.02 seconds

Soil Air CO2 Concentrations in a Spruce-Fir Forest, Maine, USA

  • Son, Yow Han;Fernandez, Ivan J.;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.177-182
    • /
    • 1992
  • Soil air $CO_2$ concentrations were measured in two soil depths (O and B horizon) by (1) the use of the Draeger direct reading chromatographic tubes and (2) syringe gas collections with gas chromatographic detection in a Spodosol supporting low elevation, commercial spruce-fir forest, Maine, USA, Mean soil air $CO_2$ concentrations(%) during the growing season of 1991 ranged from 0.11 in the O horizon by the Draeger method to 0.29 in the B horizon by the gas chromatographic method. Soil air $CO_2$ concentrations by the Draeger method were lower than those obtained using the gas chromatographic method for both soil horizons. However, data from the two methods were significantly(p<0.01) correlated and paralleled each other relative to temporal patterns. Positive and highly significant correlations existed between soil air $CO_2$ concentrations and soil temperature, although correlation coefficients only ranged from 0.13 to 0.32, depending on the method and horizon chosen.

  • PDF

Development of Cloud Amount Calculation Algorithm using MTSAT-1R Satellite Data (MTSAT-1R 정지기상위성 자료를 이용한 전운량 산출 알고리즘 개발)

  • Lee, Byung-Il;Kim, Yoonjae;Chung, Chu-Yong;Lee, Sang-Hee;Oh, Sung-Nam
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • Cloud amount calculation algorithm was developed using MTSAT-1R satellite data. The cloud amount is retrieved at 5 km ${\times}$ 5 km over the Korean Peninsula and adjacent sea area. The algorithm consists of three steps that are cloud detection, cloud type classification, and cloud amount calculation. At the first step, dynamic thresholds method was applied for detecting cloud pixels. For using objective thresholds in the algorithm, sensitivity test was performed for TBB and Albedo variation with temporal and spatial change. Detected cloud cover was classified into 3 cloud types (low-level cloud, cirrus or uncertain cloud, and cumulonimbus type high-level cloud) in second step. Finally, cloud amount was calculated by the integration method of the steradian angle of each cloud pixel over $3^{\circ}$ elevation. Calculated cloud amount was compared with measured cloud amount with eye at surface observatory for the validation. Bias, RMSE, and correlation coefficient were 0.4, 1.8, and 0.8, respectively. Validation results indicated that calculated cloud amount was a little higher than measured cloud amount but correlation was considerably high. Since calculated cloud amount has 5km ${\times}$ 5km resolution over Korean Peninsula and adjacent sea area, the satellite-driven cloud amount could show the possibility which overcomes the temporal and spatial limitation of measured cloud amount with eye at surface observatory.

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data (KOMPSAT-2 영상과 항공 LiDAR 자료를 이용한 3차원 해안선 매핑)

  • Choung, Yun Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • A shoreline mapping is essential for describing coastal areas, estimating coastal erosions and managing coastal properties. This study has planned to map the 3D shorelines with the airborne LiDAR(Light Detection and Ranging) data and the KOMPSAT-2 imagery, acquired in Uljin, Korea. Following to the study, the DSM(Digital Surface Model) is generated firstly with the given LiDAR data, while the NDWI(Normalized Difference Water Index) imagery is generated by the given KOMPSAT-2 imagery. The classification method is employed to generate water and land clusters from the NDWI imagery, as the 2D shorelines are selected from the boundaries between the two clusters. Lastly, the 3D shorelines are constructed by adding the elevation information obtained from the DSM into the generated 2D shorelines. As a result, the constructed 3D shorelines have had 0.90m horizontal accuracy and 0.10m vertical accuracy. This statistical results could be concluded in that the generated 3D shorelines shows the relatively high accuracy on classified water and land surfaces, but relatively low accuracies on unclassified water and land surfaces.

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

DEM_Comp Software for Effective Compression of Large DEM Data Sets (대용량 DEM 데이터의 효율적 압축을 위한 DEM_Comp 소프트웨어 개발)

  • Kang, In-Gu;Yun, Hong-Sik;Wei, Gwang-Jae;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.265-271
    • /
    • 2010
  • This paper discusses a new software package, DEM_Comp, developed for effectively compressing large digital elevation model (DEM) data sets based on Lempel-Ziv-Welch (LZW) compression and Huffman coding. DEM_Comp was developed using the $C^{++}$ language running on a Windows-series operating system. DEM_Comp was also tested on various test sites with different territorial attributes, and the results were evaluated. Recently, a high-resolution version of the DEM has been obtained using new equipment and the related technologies of LiDAR (LIght Detection And Radar) and SAR (Synthetic Aperture Radar). DEM compression is useful because it helps reduce the disk space or transmission bandwidth. Generally, data compression is divided into two processes: i) analyzing the relationships in the data and ii) deciding on the compression and storage methods. DEM_Comp was developed using a three-step compression algorithm applying a DEM with a regular grid, Lempel-Ziv compression, and Huffman coding. When pre-processing alone was used on high- and low-relief terrain, the efficiency was approximately 83%, but after completing all three steps of the algorithm, this increased to 97%. Compared with general commercial compression software, these results show approximately 14% better performance. DEM_Comp as developed in this research features a more efficient way of distributing, storing, and managing large high-resolution DEMs.