ghzersts|z) A 287 A 23, 2010, 4 : pp. 265-271

DEM_Comp Software for Effective Compression of Large
DEM Data Sets

tiE€2F DEM HI0o|Ee E8X == 4
DEM_Comp éﬁE‘F“O'l 7

o

Kang, In Gu" - Yun, Hong Sik® - Wei, Gwang Jae® - Lee, Dong Ha?
ol - FEA - 21&XY - 0| Sst

=z 2

TR =R P qq%agsq $2AFDEUDEM) dlojel e A& ¢ES flol sl=ut LY Lempel-Ziv-
Welch %%—%‘ﬂ—g] 08 §l= A BL DEM ¢r& AxEY 0|l DEM CompE 7I93t¢ct DEM Comp
o] AEhe Qs C glol & olgsten] RE Window E3EA AREo] 7HgeleE st 7
Az E oo -2 Hrslr| Y8 cheksk 7‘1@4 ”"ﬂﬂdg 7}A]4= DEMo| i8] ¢t&-2 saskn, &Yutd
o] gafo] W JEEES Wristelnh AT M2 AFolE FHE5u|2 LIDARS} SAR Fol| ©]8f 5154
A 2] DEMS] g-g-o] F&31A F718taL qlel,]‘”]EH A Ag-af) Ao &g A7 4 9l DEM
F&E7IEo0) g S-&51A o[SR ut, U¥tHo g ol hE7|EE 1) vlolE At "MV B4
SHAL, ii) ¥4 dato] whet & W AR TeS 75_"6‘5}“-2” 2og AR =Y, DEM_Compol A x‘ﬂ'fl
2}, Lempel-Ziv ¢&0by, sjZat :7‘;‘-4 3‘474] g drYESS 56}] DEMo©| ¢tZ=lct DEM Comp?| $F
2752 AE A9 AA 3PS A4S AP 718t AHglo] dEEES oF 3% HJEE U
ZAuk 3ghA| o] % L Ee] HRE ALos dEaLo] 9% A St AoE YEiyth o3t
SR AubzQl AF oh& AT E o] Ext u|wsle] oF 14% FE o] Y& HEo| FAE AUSE vhepdlth
ol wjet B oA AtEl DEM Comp S/WE o835 852 a4t = DEME] e, A%, vjZ2&
B 88202 g 4= 9lg A o2 Aergct

4]0} : DEM % ¢112]Z; LiDAR; Lempel-Ziv $F&4; 3 Zqt 29

Abstract

This paper discusses a new software package, DEM_Comp, developed for effectively compressing large digital ele-
vation model (DEM) data sets based on Lempel-Ziv-Welch (LZW) compression and Huffiman coding. DEM_Comp
was developed using the C** language running on a Windows-series operating system. DEM_Comp was also tested on
various test sites with different territorial attributes, and the results were evaluated. Recently, a high-resolution version
of the DEM has been obtained using new equipment and the related technologies of LiDAR (LIght Detection And
Radar) and SAR (Synthetic Aperture Radar). DEM compression is useful because it helps reduce the disk space or
transrmission bandwidth. Generally, data compression is divided into two processes: i) analyzing the relationships in the
data and ii) deciding on the compression and storage methods. DEM_Comp was developed using a three-step compres-
sion algorithm applying a DEM with a regular grid, Lempel-Ziv compression, and Huffinan coding. When pre-process-
ing alone was used on high- and low-relief terrain, the efficiency was approximately 83%, but after completing all three
steps of the algorithm, this increased to 97%. Compared with general commercial compression software, these results
show approximately 14% better performance. DEM_Comp as developed in this research features a more efficient way
of distributing, storing, and managing large high-resolution DEMs.

Keywords : DEM compression algorithm; LIDAR; Lempel-Ziv compression; Huffiman coding

1) Member - Ph.D. candidate, Dept. of Geoinformatics, University of Seoul - Planning & Policy Division, National Geographic Information
Institute (E-mail:kig777@korea kr)

2) Member - Professor, School of Civil & Environmental Engineering, Sungkyunkwan University (E-mail:yoonhs@skku.edu)

3) Corresponding Author - Member - Ph.D. candidate, Dept. of constructional & environmental system engineering, Sungkyunkwan University
(E-mail:gjwe@hist.co.kr)

4) Member - Adjunct Professor, College of Engineering, Sungkyunkwan University (E-mail:dhlee@geo.skku.ac.kr)

265

1. Introduction

A digital elevation model (DEM) is a topographic model
that can express numerically the undulating characteristics of
space. It uses a grid structure and gives the value of the
ground elevation without buildings, but with trees rising
above the surface. DEM data are an important component of
spatial databases in geographic information systems (GIS),
construction, environmental disaster modeling, and other sim-
ilar applications, serving to represent and analyze the real
world. Recently, the rapid development of remote sensing
technologies has made it possible to create 3D position data
with very high (centimeter-level) accuracy. High-resolution
(1Im %X 1m) DEMs are currently being created using high-
accuracy base data. With the expansion of 3D-imaging-relat-
ed businesses (ubiquitous city networks, navigation, etc.), the
need for high-resolution DEMs has increased.

A DEM represents topography on a fixed-size grid where
all 3D coordinates must be stored. Therefore, as the area
becomes larger, the file size increases greatly. For example, to
store a 2 X 3 km area with a 1-m grid interval, the file size will
be approximately 12 MB, but for a 20X 30 km area, the file
size increases to 1.2 GB. It is apparent that the file size is
related to the size of the area being modeled. These high-reso-
lution DEMs are cumbersome to distribute and store; there-
fore, a need exists for a faster and more effective method to
store these large-volume DEMs. The DEM data volume is so
huge that compression becomes necessary.

Data compression is useful for manipulating a large-vol-
ume DEM data set because it helps reduce the disk space,
transmission, and rendering-time requirements. On the other
hand, compressed data must be uncompressed to be viewed,
and this inverse processing may be detrimental to some appli-
cations. A compression scheme for a DEM may require high-
performance hardware for 3D viewing to enable the data to be
decompressed fast enough to be viewed as they are being
decompressed. Therefore, the design of DEM data-compres-
sion schemes involves trade-offs among several factors,
including the degree of compression, the amount of distortion
introduced, and the computational resources required to com-
press and uncompress the data.

The fundamental theory of data compression is provided by

266

information theory and by rate-distortion theory. These fields
of work were essentially started by Claude Shannon, who
published some papers on these topics in the late 1940s and
early 1950s. As for DEM data compression, Boehm (1967)
was first to approach this issue in two steps. First, the relation-
ships among the data were analyzed. And second, the com-
pression and storing method was decided upon. Boehm pre-
sented a method called the “differential altitude grid,” which
used a 1-bit code to mark height differences and analyze rela-
tionships among the data. Kidner (1992) extended this code to
2-3 bits, which could produce a representation of the topogra-
phy which was closer to reality. However, with only 2-3 bits,
the representation of steep and complex areas was limited.
Franklin (1995) presented a compression method using either
image-compression technologies or commercial compression
software. Image-compression methods have a limited number
of expressible heights, whereas commercial compression soft-
ware packages cannot define the relationships between
heights or reduce repetition. Kidner and Smith (2003) present-
ed an algorithm in which the relationships between heights
were defined and a dynamic-length numeric-coding algorithm
could then be used.

In this work, based on the techniques used to obtain the pre-
viously reported DEM compression results, the DEM_Comp
software has been developed and coded using a three-step
algorithm for compressing ASCII-formatted DEM data. In
fact, the previously developed programs are relatively simple
and can be implemented with standard utilities requiring only
a few lines of code. In this paper, an effective DEM data-com-
pression program, DEM_Comp, is discussed, which is based
on the LZW algorithm which offers many advantages and has
become a trend in data compression. DEM_Comp is remark-
ably fast for an adaptive scheme and exceeds most other soft-
ware packages in compression performance. It is apparent that
the algorithm is very straightforward, making it ideal for a

pure hardware implementation.

2. DEM Data—Compression
Algorithm

In this study, a three-step algorithm has been used for DEM

data compression. The steps consist of pre-processing using a

DEM with a regular grid, Lempel-Ziv compression, and
Huffman coding. A flowchart of the coding method is shown
in Fig. 1.

f

/ Pre processing \

Calculate Boundary

Check lattice

L

Fill non-existing points

Reduce to ID

Simplify height

Temp File

Secondary Compression

i

I Lempel-Ziv Compression

Huffman Coding

Y

Compressed. Terminate

i
al

Fig. 1. Flowchart of DEM compression

2.1 Pre—processing

The pre-processing step consists of two stages. The first
stage is to reduce the three-dimensional X-, Y-, and Z-coordi-
nates to a single dimension based on the Z-axis. The second is
to reduce the data volume by analyzing the height relation-
ships between the grid points.

2.1.1 Dimension Reduction

DEM data consist of sets of X-, Y-, and Z-dimensional
coordinates. The X- and Y-coordinates represent the position
of the points in a plane and are regularly spaced. Therefore, if
the upper left-hand point of the DEM and the distance to each
point are known, it is possible to find an expression for the
position of any point.

In this work, the X~ and Y-coordinates of all points, with
the exception of the first, were excluded, and each point was
reduced to a single dimension containing only a Z~elevation

value. Previous studies have used similar methods for DEMs

DEM_Comp Software for Effective Compression of Large DEM Data Sets

with a fixed grid. However, in this study, the algorithm as
developed was designed to exclude errors and to be applied to
DEMSs with irregularly shaped boundaries. Specifics of the
dimension-reduction algorithm are shown in Fig. 2. First, the
file was scanned, then the DEM was wrapped in a virtual
square, and the lower left-hand X and Y points (Min(X) and
Min(Y)) and the length of the X- and Y-axes (Length(X) and
Length(Y)) were calculated. Unless the DEM is square with a
side parallel to the axis, some points will be missing,

Start of line Height of first
1 / existing point

[-9990.99 | 11 | 706.84 [706.80 | 706.81 | 706.78 | 706.77 | 106.78 | 00 =

[-9999.99 [31 70276] 70275 | 702.74 | 702.75 | 70276 [702.77] o=

[-9999.99 [29 [701.9a] 70192 [20189 | 701.07 [701.86 [701.88] oo«

[-9999.99 [20 [r01.80] 70177 [70108] 20128 [70170 [70167] o=
|
Number of contiguous
non-existing points

Fig. 2. Dimension-reduction process

To identify these points, an identifier with a certain value
has been used, followed by a field expressing the number of
missing points. An identifier, as shown in Fig. 3, is composed
of an Identifier and a Jump field. Each Identifier represents a
non-existing point, and the Jump field shows the number of
contiguous non-existing points.

IDENTIFIER JUMP(num)

Fig, 3. Structure of an identifier

The equation for restoring the X- and Y-coordinates is as

follows:

X, = X(base) + (Count(Z)! X (legnth))
X, = X(base) + (Count{Z) | X (length)) (1)
Y, =Y(base) + (Count(Z)/ X (length))

where

X, =Restored X-coordinate
Y, =Restored Y-coordinate
X (base) = Lower lefi-hand X-coordinate
Y(base) =Lower left-hand Y-coordinate

267

BFEFAA, A 28 A 2%

Count(Z) = Number of elevations read
X (length) = Distance between the leftmost and rightmost

X-values

2.1.2 Simplification of the Height Value

Because a DEM represents a real surface, elevation points
which are physically close have similar heights. After dimen-
sion reduction, the DEM contains only height information.
Using the current point as the base, the differential between
the current and next points is written into the file.

There are two benefits of this process one is that the process
minimizes the number of bytes used, and the second is that
the amount of repetition in the data increases. This process
transforms the values representing similar heights, which

makes the Lempel-Ziv compression and Huffman coding

methods more effective.
Start of line Height of first
l / existing point

[999999 | 11 [7068a] -00a] 001 | -00s | -001 | 001 Joco

[-39 | 81 [ro256] -001 [~0o0 { 001 | 001 [oo [eee

4 -
[999099 1 20 1701941 -002 | -0.
T-

03 | ~0.02 | ~0.01 [~001 | 00
| ~s99999 | 20 [70180] -008 | ~0.02 | -0.02 | ~008 [~0.08 | 000
i |
Number of contignous Differential with

non-existing points the previous grid point

Fig. 4. Elevation simplification

2.2 Lempel-Ziv Compression

The Lempel-Ziv compression algorithm was first presented
by Abraham Lempel and Jacob Ziv (1977). It uses a method
called the “sliding window”, which sequentially finds and

reduces repeated data within a search range.

Lempel-Ziv Application

Hist hist hist hist gist | Hist h[D=5, 1=18] |

Fig. 5. Example of Lempel-Ziv application

The Lempel-Ziv algorithm provides simple and quick com-
pression of data. The algorithm works by replacing a string of
characters with single codes, called “tokens”. Each time the

algorithm recognizes a new string, it outputs the string and

268

adds it to a table or directory. The next time it encounters that
string, it outputs only the new code from the table. The output
of a single code instead of a string of codes means that the
data has been compressed or shortened, enabling efficient data
transmission via the Internet. In this work, Lempel-Ziv com-

pression was used after the pre-processing step.

2.3 Huffman Coding

Huffman coding is a type of transposition code in which
high-frequency values are given short codes and low-frequen-
cy values are given longer codes. Phone numbers are an
example when making a long-distance call, more numbers
have to be pressed than when calling locally. This is because
local calls are more frequently made. Emergency numbers are
shorter because there is a need for high-frequency numbers

which can be easily pressed.

Fig. 6. Example of a Huffman binary tree

Huffiman coding is performed according to the criteria just
described: the data are analyzed, and the highest-frequency
segments are then given the highest weights and the shortest
codes. By this process,high efficiency is obtained. For exam-
ple, the string “ABCDEABCDEABCDAAAAAACCC” can
be compressed using only five characters. The counted fre-
quencies are 9 times A, 3 times B, 6 times C, 3 times B, and 2
times E. Therefore, A is given the shortest bit string and E the
longest. By this process, the total size of the file is reduced.

Fig. 6 shows how the characters are stored. A is coded as 0,
Cas 110,Bas 1110, E as 11110, and D as 11111, which pro-
vides a high compression rate and good effectiveness when
many repetitions occur. In particular, through the pre-process-

ing used in this research, the DEM processing algorithm gains
an even higher compression rate and great efficiency in data

storage.

3. Development of DEM_Comp

The DEM_Comp software was developed using the C*+*
language based on the MS Windows GUI. This software is
available for Windows operating systems (Windows 9x,
2000, and XP), which are the most widely used multi-tasking
environment for PCs. Fig. 7 shows the user-interface window
of the DEM_Comp software. By clicking “OPEN” in the
main menu, a *.dem file can be read from a specified directo-

1y.

- Fite Open

XYZ File : W 2 T W R SRmav T TRt __J DEM Compression] ;
Compressed Fils : [FHEE TR B WP demoy!, IWaata _J DEM Restoration |
i

WEREESNRRANBEERR [0F V0 st

Opening DEM(.xy2) file

=== Zipping file ==
Zip archie created OK

Fig. 7. Screen shot of main window

By clicking the “DEM Compression” button, the file can be
compressed, and by clicking the “DEM Restorati” button, the

compressed file can be saved. The bottom portion of the win-

Fig. 8. DEM:s of high- and low-relief areas

DEM_Comp Software for Effective Compression of Large DEM Data Sets

Fig. 9. Aerial photographs of high-undulation and low-undulation
areas

dow shows a brief summary of file opening and zip file pro-
cessing status.

DEM_Comp was tested on several different data sets to
evaluate its efficiency. To evaluate compression efficiency in
relation to the topographical attributes of DEMs, an experi-
ment was performed on different terrains consisting of high-
and low-relief areas, as shown in Figs. 8 and 9. The results of
compressing these data sets using several software packages
are presented in Figs. 10 and 11.

The results obtained from DEM_Comp were compared
with those from the commercial compression tools
“pkzip.exe” provided by PKWARE Ltd. (zlib Group, 2010)
and “rar.exe” provided by RARLAB (RARLAB, 2010),
which showed an approximately +3% difference from the
DEM_Comp results. In high-relief areas, DEM_Comp gave
better results than those from “pkzip.exe” and “rar.exe.” From
these results, it was clear that the compression rates were sim-
ilar. Therefore, it was shown that dimension reduction has a
large effect on reducing data volume.

To prove the efficiency of the pre-processing method, the
graph shown in Fig. 10 was created, based on one of the
experimental sites and showing the frequency of the elevation
relief between physically close points. Fig. 10 shows that the
differences between the close points are small, with over 60%
of the elevation relief between close points being in the range
0 - 0.09, which means that subsequent compression processes

will have a large effect.

269

Fzarsts|x), A 289 Al 23

10-009 01-0i% 02.029 03-03 O 05-039 06-069 07-07 08%-089 09-099 0.
Range of differcoce (grid value)

Fig. 10. Frequency differences between close grid points

Fig. 11 represents a size comparison of files compressed
using Pkzip, rar, pre-processing alone, and DEM_Comp. 1t is
evident that the DEM_Comp algorithm developed in this
study shows higher compression ability than the other tools.

250000
W Origwd Dot
W zip
WPre-prosessing
200000 * i] Peag
) ODEM Couy |

L bbb li

Plane Area A Plaoe Ama 8 Plane Acea n.x/uu r.mmm y.mmmn Mountm
AmF A Aversge

Fiie Sive (KBytes)

100000

Fig. 11. Size comparison of files compressed using Pkzip, pre-pro-
cessing alone, rar, and DEM_Comp

At the end of the compression process, the DEM input data
set was reduced to 5 - 7MB. In high- and low-relief areas,
DEM_Comp efficiencies were 97% and 96.6% respectively,
as shown in Fig. 12. Usually commercial sofiware packages
use 4 - 5 bytes to express an elevation in a DEM.
DEM_Comp uses an average of 1 byte in high-relief areas
and 0.9 byte in low-relief areas. Therefore, it can be conclud-
ed that by understanding the structure of the DEM and using
its characteristics, data can be compressed with a higher effi-
ciency than that obtainable using commercial software, and
the efficiency is even higher when archiving topographies

with low-relief areas.

" Phrip

U e fRE
e B L] e Prorocessiog
o5 M- DEM_Comg
R |
!
E N -
E 8% ! " -
» = e e g T

PlocAraA PlancAcaB PhoeAnaC PhoeAme Mounmin Moudsy Mowlain Moustue
Avenge AesD A E AmaF A Avena

Fig. 12. Efficiency comparison of DEM_Comp, pre-processing
alone, rar, and Pkzip

DEM_Comp reduces the size of its output files using adap-
tive Lempel-Ziv coding. Whenever possible, each file is
replaced by one with the extension *.Z, while keeping the
same ownership modes, access rights, and modification times.
Compressed files can be restored to their original form using
uncompress or zcat. Compression is performed using the
modified Lempel-Ziv algorithm as given in Welch (1984),

After the bit limit is reached, compress periodically checks
the compression ratio. If it is increasing, compress continues
to use the existing code dictionary. However, if the compres-
sion ratio decreases, compress discards the table of substrings
and rebuilds it from scratch. This enables the algorithm to
adapt to the next “block” of the file.

4. Conclusions

This paper has described the development of the
DEM_Comp software for data compression of large high-res-
olution DEMs, which offers a more efficient method of stor-
ing, transmitting, and using these data.

DEM_Comp is composed of a pre-processing step, a
Lempel-Ziv compression step, and a Huffman coding step.
DEM_Comp was tested on both high- and low-relief sites to
determine its efficiency for areas with different topographies.
The software was tested and evaluated on various sites with
different territorial attributes. According to the results, the use
of pre-processing on high- and low-relief areas gave an effi-
ciency of approximately 83%, but after applying all three
steps of the DEM_Comp algorithm, this efficiency increased
to 97%. The file size obtained with DEM_Comp was 4 - 5
times smaller than that obtained from pkzip, rar, and pre-pro-

cessing alone, and DEM_Comp also had higher efficiency in
flat areas.

Unlike earlier algorithms which needed a rectangular
DEM, DEM_Comp can analyze non-rectangular DEMs and
was also designed to store the exact value after the decimal
point. DEM_Comp as presented in this study could be effi-
ciently used in 3D viewing software applications such as
Google Earth and Virtual Explorer.

References

Boehm, B. W. (1967), Tabular representations of multivariate
functions with applications to topographic modeling, In:
Proceedings, 22nd ACM National Conference, Washington
DC, pp. 403415.

Franklin, W. R. (1995), Compressing elevation data, In:
Advances in Spatial Databases: Proceedings of the Fourth
International Symposium on Large Spatial Databases (SSD
95), Portland, ME, August, Lecture Notes in Computer
Science, Vol. 951. Springer, Berlin, pp. 385-404.

DEM_Comp Software for Effective Compression of Large DEM Data Sets

Jacob, Z. and Lempel, A. (1977), A universal algorithm for
sequential data compression, IEEE Transactions on
Information Theory, Vol. 23, No. 3, pp. 337-343.

Kidner, D. B. and Smith, D. H. (1992), Compression of digi-
tal elevation models by Huffman coding, Computers &
Geosciences, Vol. 18, No. 8, pp. 1013-1034.

Kidner, D. B. and Smith, D. H. (2003), Advances in data
compression of digital elevation models, Computers &
Geosciences, Vol. 29, No. &, pp. 985- 1002,

Welch, T. A, (1984), A technique for high-performance data
compression, IEEE Computer, Vol. 17, No. 6, pp. 8-19.

RARLAB (2010), rar.exe, http://www.rarsoft.com

zlib Group (2010), pkzip.exe, http://www.zlib.net

(HY 2010.03.30, AAFY 2010. 04. 19, A1A1eEE A 2010. 04, 24)

271

